Skip to content

Commit

Permalink
Automated sync from github.com/tensorflow/tensorflow (tensorflow#2571)
Browse files Browse the repository at this point in the history
BUG=automated sync from upstream
NO_CHECK_TFLITE_FILES=automated sync from upstream
  • Loading branch information
TFLM-bot authored May 15, 2024
1 parent 7dbd9d2 commit b281a0d
Showing 1 changed file with 97 additions and 0 deletions.
97 changes: 97 additions & 0 deletions tensorflow/lite/kernels/internal/reference/transpose_conv.h
Original file line number Diff line number Diff line change
Expand Up @@ -219,6 +219,103 @@ inline void TransposeConv(
}
}

inline void HybridTransposeConv(
const ConvParams& params, float* scaling_factors_ptr,
const RuntimeShape& input_shape, const int8_t* input_data,
const RuntimeShape& filter_shape, const int8_t* filter_data,
const RuntimeShape& bias_shape, const float* bias_data,
const RuntimeShape& output_shape, float* output_data,
const float* per_channel_scale, int32_t* input_offset) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);

const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const float output_activation_min = params.float_activation_min;
const float output_activation_max = params.float_activation_max;
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}

// Although transpose convolution simplifies to convolution with transposed
// weights for strides of 1, non-unitary striding complicates matters. To
// keep this reference implementation as clear as possible, we use a
// "scatter" access pattern, where we loop through all the input elements,
// computing their influence on the output, rather than looping through the
// output elements in the typical "gather" access pattern of a conv. We
// therefore must initialize the output array to zero.
const int num_elements = output_shape.FlatSize();
for (int i = 0; i < num_elements; i++) {
output_data[i] = 0.0f;
}

// Loop through input elements one at a time.
for (int batch = 0; batch < batches; ++batch) {
const float scaling_factor = scaling_factors_ptr[batch];
for (int in_y = 0; in_y < input_height; ++in_y) {
for (int in_x = 0; in_x < input_width; ++in_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
// Loop through the output elements it will influence
const int out_x_origin = (in_x * stride_width) - pad_width;
const int out_y_origin = (in_y * stride_height) - pad_height;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int out_channel = 0; out_channel < output_depth;
++out_channel) {
// Compute output element location
const int out_x = out_x_origin + filter_x;
const int out_y = out_y_origin + filter_y;
// We cannot accumulate out of bounds
if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
(out_y < output_height)) {
int32_t input_value = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_value =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
int32_t acc =
(input_value - input_offset[batch]) * filter_value;
output_data[Offset(output_shape, batch, out_y, out_x,
out_channel)] +=
acc * per_channel_scale[out_channel] * scaling_factor;
}
}
}
}
}
}
}
}

for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
float acc = output_data[Offset(output_shape, batch, out_y, out_x,
out_channel)];
if (bias_data) acc += bias_data[out_channel];

output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
ActivationFunctionWithMinMax(acc, output_activation_min,
output_activation_max);
}
}
}
}
}

} // namespace reference_ops
} // namespace tflite

Expand Down

0 comments on commit b281a0d

Please sign in to comment.