Skip to content

Commit

Permalink
Merge pull request pybop-team#405 from pybop-team/269-add-eis-paramet…
Browse files Browse the repository at this point in the history
…er-identification-methods

Adds EIS prediction methods
  • Loading branch information
BradyPlanden authored Aug 22, 2024
2 parents 8cada6f + 6a6b7dd commit d414460
Show file tree
Hide file tree
Showing 35 changed files with 1,067 additions and 126 deletions.
1 change: 1 addition & 0 deletions .github/workflows/lychee_links.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ jobs:
--exclude "https://a.tile.openstreetmap.org/*"
--exclude "https://openstreetmap.org/*|https://www.openstreetmap.org/*"
--exclude "https://cdn.plot.ly/*"
--exclude "http://www.w3.org/*|https://www.w3.org/*"
--exclude "https://doi.org/*"
--exclude-path ./CHANGELOG.md
--exclude-path asv.conf.json
Expand Down
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

## Features

- [#405](https://github.com/pybop-team/PyBOP/pull/405) - Adds frequency-domain based EIS prediction methods via `model.simulateEIS` and updates to `problem.evaluate` with examples and tests.
- [#460](https://github.com/pybop-team/PyBOP/pull/460) - Notebook example files added for ECM and folder structure updated.
- [#450](https://github.com/pybop-team/PyBOP/pull/450) - Adds support for IDAKLU with output variables, and corresponding examples, tests.
- [#364](https://github.com/pybop-team/PyBOP/pull/364) - Adds the MultiFittingProblem class and the multi_fitting example script.
Expand Down
82 changes: 82 additions & 0 deletions examples/scripts/eis_fitting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
import numpy as np

import pybop

# Define model
parameter_set = pybop.ParameterSet.pybamm("Chen2020")
parameter_set["Contact resistance [Ohm]"] = 0.0
initial_state = {"Initial SoC": 0.5}
n_frequency = 20
sigma0 = 1e-4
f_eval = np.logspace(-4, 5, n_frequency)
model = pybop.lithium_ion.SPM(
parameter_set=parameter_set,
eis=True,
options={"surface form": "differential", "contact resistance": "true"},
)

# Create synthetic data for parameter inference
sim = model.simulateEIS(
inputs={
"Negative electrode active material volume fraction": 0.531,
"Positive electrode active material volume fraction": 0.732,
},
f_eval=f_eval,
initial_state=initial_state,
)

# Fitting parameters
parameters = pybop.Parameters(
pybop.Parameter(
"Negative electrode active material volume fraction",
prior=pybop.Uniform(0.4, 0.75),
bounds=[0.375, 0.75],
),
pybop.Parameter(
"Positive electrode active material volume fraction",
prior=pybop.Uniform(0.4, 0.75),
bounds=[0.375, 0.75],
),
)


def noise(sigma, values):
# Generate real part noise
real_noise = np.random.normal(0, sigma, values)

# Generate imaginary part noise
imag_noise = np.random.normal(0, sigma, values)

# Combine them into a complex noise
return real_noise + 1j * imag_noise


# Form dataset
dataset = pybop.Dataset(
{
"Frequency [Hz]": f_eval,
"Current function [A]": np.ones(n_frequency) * 0.0,
"Impedance": sim["Impedance"] + noise(sigma0, len(sim["Impedance"])),
}
)

signal = ["Impedance"]
# Generate problem, cost function, and optimisation class
problem = pybop.FittingProblem(model, parameters, dataset, signal=signal)
cost = pybop.GaussianLogLikelihoodKnownSigma(problem, sigma0=sigma0)
optim = pybop.CMAES(cost, max_iterations=100, sigma0=0.25, max_unchanged_iterations=30)

x, final_cost = optim.run()
print("Estimated parameters:", x)

# Plot the nyquist
pybop.nyquist(problem, problem_inputs=x, title="Optimised Comparison")

# Plot convergence
pybop.plot_convergence(optim)

# Plot the parameter traces
pybop.plot_parameters(optim)

# Plot 2d landscape
pybop.plot2d(optim, steps=10)
2 changes: 1 addition & 1 deletion examples/scripts/exp_UKF.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@
# Verification step: make another prediction using the Observer class
model.build(parameters=parameters)
simulator = pybop.Observer(parameters, model, signal=["2y"])
simulator.time_data = t_eval
simulator.domain_data = t_eval
measurements = simulator.evaluate(true_inputs)

# Verification step: Compare by plotting
Expand Down
2 changes: 1 addition & 1 deletion examples/scripts/spm_IRPropMin.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@

# Generate problem, cost function, and optimisation class
problem = pybop.FittingProblem(model, parameters, dataset)
cost = pybop.SumSquaredError(problem)
cost = pybop.Minkowski(problem, p=2)
optim = pybop.IRPropMin(cost, max_iterations=100)

x, final_cost = optim.run()
Expand Down
18 changes: 9 additions & 9 deletions examples/standalone/problem.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ def __init__(
check_model=True,
signal=None,
additional_variables=None,
init_soc=None,
initial_state=None,
):
super().__init__(parameters, model, check_model, signal, additional_variables)
self._dataset = dataset.data
Expand All @@ -26,15 +26,15 @@ def __init__(
if name not in self._dataset:
raise ValueError(f"expected {name} in list of dataset")

self._time_data = self._dataset["Time [s]"]
self.n_time_data = len(self._time_data)
if np.any(self._time_data < 0):
self._domain_data = self._dataset[self.domain]
self.n_data = len(self._domain_data)
if np.any(self._domain_data < 0):
raise ValueError("Times can not be negative.")
if np.any(self._time_data[:-1] >= self._time_data[1:]):
if np.any(self._domain_data[:-1] >= self._domain_data[1:]):
raise ValueError("Times must be increasing.")

for signal in self.signal:
if len(self._dataset[signal]) != self.n_time_data:
if len(self._dataset[signal]) != self.n_data:
raise ValueError(
f"Time data and {signal} data must be the same length."
)
Expand All @@ -56,7 +56,7 @@ def evaluate(self, inputs, **kwargs):
"""

return {
signal: inputs["Gradient"] * self._time_data + inputs["Intercept"]
signal: inputs["Gradient"] * self._domain_data + inputs["Intercept"]
for signal in self.signal
}

Expand All @@ -78,7 +78,7 @@ def evaluateS1(self, inputs):

y = self.evaluate(inputs)

dy = np.zeros((self.n_time_data, self.n_outputs, self.n_parameters))
dy[:, 0, 0] = self._time_data
dy = np.zeros((self.n_data, self.n_outputs, self.n_parameters))
dy[:, 0, 0] = self._domain_data

return (y, dy)
3 changes: 2 additions & 1 deletion pybop/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
#
# Utilities
#
from ._utils import is_numeric
from ._utils import is_numeric, SymbolReplacer

#
# Experiment class
Expand Down Expand Up @@ -157,6 +157,7 @@
from .plotting.plot_convergence import plot_convergence
from .plotting.plot_parameters import plot_parameters
from .plotting.plot_problem import quick_plot
from .plotting.nyquist import nyquist

#
# Remove any imported modules, so we don't expose them as part of pybop
Expand Down
73 changes: 51 additions & 22 deletions pybop/_dataset.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
from typing import Union

import numpy as np
from pybamm import solvers

Expand Down Expand Up @@ -76,41 +78,68 @@ def __getitem__(self, key):

return self.data[key]

def check(self, signal=None):
def check(self, domain: str = None, signal: Union[str, list[str]] = None) -> bool:
"""
Check the consistency of a PyBOP Dataset against the expected format.
Parameters
----------
domain : str, optional
The domain of the dataset. Defaults to "Time [s]".
signal : str or List[str], optional
The signal(s) to check. Defaults to ["Voltage [V]"].
Returns
-------
bool
If True, the dataset has the expected attributes.
True if the dataset has the expected attributes.
Raises
------
ValueError
If the time series and the data series are not consistent.
"""
if signal is None:
signal = ["Voltage [V]"]
if isinstance(signal, str):
signal = [signal]

# Check that the dataset contains time and chosen signal
for name in ["Time [s]", *signal]:
if name not in self.names:
raise ValueError(f"expected {name} in list of dataset")

# Check for increasing times
time_data = self.data["Time [s]"]
self.domain = domain or "Time [s]"
signals = [signal] if isinstance(signal, str) else (signal or ["Voltage [V]"])

# Check that the dataset contains domain and chosen signals
missing_attributes = set([self.domain, *signals]) - set(self.names)
if missing_attributes:
raise ValueError(
f"Expected {', '.join(missing_attributes)} in list of dataset"
)

domain_data = self.data[self.domain]

# Check domain-specific constraints
if self.domain == "Time [s]":
self._check_time_constraints(domain_data)
elif self.domain == "Frequency [Hz]":
self._check_frequency_constraints(domain_data)

# Check for consistent data length
self._check_data_consistency(domain_data, signals)

return True

@staticmethod
def _check_time_constraints(time_data: np.ndarray) -> None:
if np.any(time_data < 0):
raise ValueError("Times can not be negative.")
raise ValueError("Times cannot be negative.")
if np.any(time_data[:-1] >= time_data[1:]):
raise ValueError("Times must be increasing.")

# Check for consistent data
n_time_data = len(time_data)
for s in signal:
if len(self.data[s]) != n_time_data:
raise ValueError(f"Time data and {s} data must be the same length.")

return True
@staticmethod
def _check_frequency_constraints(freq_data: np.ndarray) -> None:
if np.any(freq_data < 0):
raise ValueError("Frequencies cannot be negative.")

def _check_data_consistency(
self, domain_data: np.ndarray, signals: list[str]
) -> None:
n_domain_data = len(domain_data)
for s in signals:
if len(self.data[s]) != n_domain_data:
raise ValueError(
f"{self.domain} data and {s} data must be the same length."
)
Loading

0 comments on commit d414460

Please sign in to comment.