Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improved memory usage in gCNV. #5781

Merged
merged 4 commits into from
Mar 18, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions scripts/gatkcondaenv.yml.template
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ dependencies:
- intel-openmp=2018.0.0
- mkl=2018.0.1
- mkl-service=1.1.2
- defaults::numpy==1.13.3
- openssl=1.0.2l=0
- pip=9.0.1=py36_1
- python=3.6.2=0
Expand All @@ -29,7 +30,6 @@ dependencies:
- keras==2.2.0
- markdown==2.6.9
- matplotlib==2.1.0
- numpy==1.13.3
- pandas==0.21.0
- patsy==0.4.1
- protobuf==3.5.0.post1
Expand All @@ -44,7 +44,7 @@ dependencies:
- scipy==1.0.0
- six==1.11.0
- $tensorFlowDependency
- theano==0.9.0
- theano==1.0.4
- tqdm==4.19.4
- werkzeug==0.12.2
- gatkPythonPackageArchive.zip
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,8 @@
default_class_log_posterior_tsv_filename = "log_q_tau_tk.tsv"
default_baseline_copy_number_tsv_filename = "baseline_copy_number_t.tsv"
default_copy_number_segments_tsv_filename = "copy_number_segments.tsv"
default_denoised_copy_ratios_mean_tsv_filename = "denoised_copy_ratios_mu.tsv"
default_denoised_copy_ratios_std_tsv_filename = "denoised_copy_ratios_std.tsv"
default_denoised_copy_ratios_mean_tsv_filename = "mu_denoised_copy_ratio_t.tsv"
default_denoised_copy_ratios_std_tsv_filename = "std_denoised_copy_ratio_t.tsv"

default_denoising_config_json_filename = "denoising_config.json"
default_calling_config_json_filename = "calling_config.json"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -154,12 +154,12 @@ def __call__(self):
self.denoising_model_approx)

# compute approximate denoised copy ratios
denoising_copy_ratios_approx_generator = commons.get_sampling_generator_for_model_approximation(
model_approx=self.denoising_model_approx, model_var_name='denoised_copy_ratios')
denoised_copy_ratios_mean, denoised_copy_ratios_variance =\
math.calculate_mean_and_variance_online(denoising_copy_ratios_approx_generator)
denoised_copy_ratios_mean = np.transpose(denoised_copy_ratios_mean)
denoised_copy_ratios_std = np.transpose(np.sqrt(denoised_copy_ratios_variance))
_logger.info("Sampling and approximating posteriors for denoised copy ratios...")
denoising_copy_ratios_st_approx_generator = commons.get_sampling_generator_for_model_approximation(
model_approx=self.denoising_model_approx, node=self.denoising_model['denoised_copy_ratio_st'])
mu_denoised_copy_ratio_st, var_denoised_copy_ratio_st =\
math.calculate_mean_and_variance_online(denoising_copy_ratios_st_approx_generator)
std_denoised_copy_ratio_st = np.sqrt(var_denoised_copy_ratio_st)

for si, sample_name in enumerate(self.denoising_calling_workspace.sample_names):
sample_name_comment_line = [io_consts.sample_name_sam_header_prefix + sample_name]
Expand Down Expand Up @@ -201,20 +201,20 @@ def __call__(self):
write_shape_info=False)

# write denoised copy ratio means
denoised_copy_ratio_mu_s = denoised_copy_ratios_mean[:, si]
mu_denoised_copy_ratio_t = mu_denoised_copy_ratio_st[si, :]
io_commons.write_ndarray_to_tsv(
os.path.join(sample_posterior_path, io_consts.default_denoised_copy_ratios_mean_tsv_filename),
denoised_copy_ratio_mu_s,
mu_denoised_copy_ratio_t,
extra_comment_lines=sample_name_comment_line,
header=io_consts.denoised_copy_ratio_mean_column_name,
write_shape_info=False
)

# write denoised copy ratio standard deviations
denoised_copy_ratio_std_s = denoised_copy_ratios_std[:, si]
std_denoised_copy_ratio_t = std_denoised_copy_ratio_st[si, :]
io_commons.write_ndarray_to_tsv(
os.path.join(sample_posterior_path, io_consts.default_denoised_copy_ratios_std_tsv_filename),
denoised_copy_ratio_std_s,
std_denoised_copy_ratio_t,
extra_comment_lines=sample_name_comment_line,
header=io_consts.denoised_copy_ratio_std_column_name,
write_shape_info=False
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -226,16 +226,18 @@ def add_sample_to_cum_sum(posterior_sample, _cum_sum):
return outputs[-1] / size


def get_sampling_generator_for_model_approximation(model_approx: pm.MeanField, model_var_name: str,
def get_sampling_generator_for_model_approximation(model_approx: pm.MeanField, node,
num_samples: int = 20) -> Generator:
"""Get a generator that returns samples of a precomputed model approximation for a specific variable in that model

Args:
model_approx: an instance of PyMC3 mean-field approximation
model_var_name: a stochastic node in the model
node: a stochastic node in the model
num_samples: number of samples to draw

Returns:
A generator that will yield `num_samples` samples from an approximation to a posterior
"""
return (model_approx.sample()[model_var_name] for _ in range(num_samples))

sample = model_approx.sample_node(node, size=1)[0]
return (sample.eval() for _ in range(num_samples))
Original file line number Diff line number Diff line change
Expand Up @@ -437,13 +437,18 @@ def __init__(self,
self.log_trans_tkk: Optional[np.ndarray] = None

# GC bias factors
# (to be initialize by calling `initialize_bias_inference_vars`)
# (to be initialized by calling `initialize_bias_inference_vars`)
self.W_gc_tg: Optional[tst.SparseConstant] = None

# auxiliary data structures for hybrid q_c_expectation_mode calculation
# (to be initialize by calling `initialize_bias_inference_vars`)
# (to be initialized by calling `initialize_bias_inference_vars`)
self.interval_neighbor_index_list: Optional[List[List[int]]] = None

# denoised copy ratios
denoised_copy_ratio_st = np.zeros((self.num_samples, self.num_intervals), dtype=types.floatX)
self.denoised_copy_ratio_st: types.TensorSharedVariable = th.shared(
denoised_copy_ratio_st, name="denoised_copy_ratio_st", borrow=config.borrow_numpy)

# initialize posterior
posterior_initializer.initialize_posterior(denoising_config, calling_config, self)
self.initialize_bias_inference_vars()
Expand Down Expand Up @@ -778,10 +783,10 @@ def __init__(self,
# the expected number of erroneously mapped reads
mean_mapping_error_correction_s = eps * read_depth_s * shared_workspace.average_ploidy_s

denoised_copy_ratios = ((shared_workspace.n_st - mean_mapping_error_correction_s.dimshuffle(0, 'x'))
denoised_copy_ratio_st = ((shared_workspace.n_st - mean_mapping_error_correction_s.dimshuffle(0, 'x'))
/ ((1.0 - eps) * read_depth_s.dimshuffle(0, 'x') * bias_st))

Deterministic(name='denoised_copy_ratios', var=denoised_copy_ratios)
Deterministic(name='denoised_copy_ratio_st', var=denoised_copy_ratio_st)

mu_stc = ((1.0 - eps) * read_depth_s.dimshuffle(0, 'x', 'x')
* bias_st.dimshuffle(0, 1, 'x')
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
import os

# set theano flags
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore,openmp=true"
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore," + \
"openmp=true,blas.ldflags=-lmkl_rt,openmp_elemwise_minsize=10"

import logging
import argparse
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
import os

# set theano flags
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore,openmp=true"
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore," + \
"openmp=true,blas.ldflags=-lmkl_rt,openmp_elemwise_minsize=10"

import argparse
import gcnvkernel
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@
import shutil

# set theano flags
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore,openmp=true"
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore," + \
"openmp=true,blas.ldflags=-lmkl_rt,openmp_elemwise_minsize=10"

import logging
import argparse
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
import os

# set theano flags
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore,openmp=true"
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore," + \
"openmp=true,blas.ldflags=-lmkl_rt,openmp_elemwise_minsize=10"

import argparse
import gcnvkernel
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
import os

# set theano flags
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore,openmp=true"
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float64,optimizer=fast_run,compute_test_value=ignore," + \
"openmp=true,blas.ldflags=-lmkl_rt,openmp_elemwise_minsize=10"

import logging
import argparse
Expand Down