Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[math] fix numpy array priority #533

Merged
merged 2 commits into from
Nov 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions brainpy/_src/dyn/neurons/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ def __init__(
scaling: Optional[bm.Scaling] = None,

spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
):
Expand All @@ -43,18 +43,18 @@ def __init__(
self.spk_reset = spk_reset
self.spk_fun = is_callable(spk_fun)
self.detach_spk = detach_spk
self._spk_type = spk_type
self._spk_dtype = spk_dtype
if scaling is None:
self.scaling = bm.get_membrane_scaling()
else:
self.scaling = scaling

@property
def spk_type(self):
if self._spk_type is None:
def spk_dtype(self):
if self._spk_dtype is None:
return bm.float_ if isinstance(self.mode, bm.TrainingMode) else bm.bool_
else:
return self._spk_type
return self._spk_dtype

def offset_scaling(self, x, bias=None, scale=None):
s = self.scaling.offset_scaling(x, bias=bias, scale=scale)
Expand Down
76 changes: 38 additions & 38 deletions brainpy/_src/dyn/neurons/lif.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ def __init__(
mode: Optional[bm.Mode] = None,
name: Optional[str] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand All @@ -99,7 +99,7 @@ def __init__(
spk_fun=spk_fun,
detach_spk=detach_spk,
method=method,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,
scaling=scaling)

Expand All @@ -124,7 +124,7 @@ def derivative(self, V, t, I):

def reset_state(self, batch_size=None, **kwargs):
self.V = self.offset_scaling(self.init_variable(self._V_initializer, batch_size))
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_type), batch_size)
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_dtype), batch_size)

def update(self, x=None):
t = share.load('t')
Expand Down Expand Up @@ -206,7 +206,7 @@ def __init__(
mode: Optional[bm.Mode] = None,
name: Optional[str] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand All @@ -230,7 +230,7 @@ def __init__(
spk_fun=spk_fun,
detach_spk=detach_spk,
method=method,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,
scaling=scaling)

Expand All @@ -257,7 +257,7 @@ def derivative(self, V, t, I):

def reset_state(self, batch_size=None, **kwargs):
self.V = self.offset_scaling(self.init_variable(self._V_initializer, batch_size))
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_type), batch_size)
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_dtype), batch_size)

def update(self, x=None):
t = share.load('t')
Expand Down Expand Up @@ -399,7 +399,7 @@ def __init__(
keep_size: bool = False,
mode: Optional[bm.Mode] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
detach_spk: bool = False,
spk_reset: str = 'soft',
method: str = 'exp_auto',
Expand Down Expand Up @@ -429,7 +429,7 @@ def __init__(
sharding=sharding,
spk_fun=spk_fun,
detach_spk=detach_spk,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,

init_var=False,
Expand Down Expand Up @@ -673,7 +673,7 @@ def __init__(
mode: Optional[bm.Mode] = None,
name: Optional[str] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand All @@ -699,7 +699,7 @@ def __init__(
spk_fun=spk_fun,
detach_spk=detach_spk,
method=method,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,
scaling=scaling)

Expand Down Expand Up @@ -730,7 +730,7 @@ def derivative(self, V, t, I):

def reset_state(self, batch_size=None, **kwargs):
self.V = self.offset_scaling(self.init_variable(self._V_initializer, batch_size))
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_type), batch_size)
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_dtype), batch_size)

def update(self, x=None):
t = share.load('t')
Expand Down Expand Up @@ -1001,7 +1001,7 @@ def __init__(
keep_size: bool = False,
mode: Optional[bm.Mode] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
detach_spk: bool = False,
spk_reset: str = 'soft',
method: str = 'exp_auto',
Expand Down Expand Up @@ -1033,7 +1033,7 @@ def __init__(
sharding=sharding,
spk_fun=spk_fun,
detach_spk=detach_spk,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,

init_var=False,
Expand Down Expand Up @@ -1343,7 +1343,7 @@ def __init__(
mode: Optional[bm.Mode] = None,
name: Optional[str] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand Down Expand Up @@ -1373,7 +1373,7 @@ def __init__(
spk_fun=spk_fun,
detach_spk=detach_spk,
method=method,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,
scaling=scaling)
# parameters
Expand Down Expand Up @@ -1416,7 +1416,7 @@ def derivative(self):
def reset_state(self, batch_size=None, **kwargs):
self.V = self.offset_scaling(self.init_variable(self._V_initializer, batch_size))
self.w = self.std_scaling(self.init_variable(self._w_initializer, batch_size))
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_type), batch_size)
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_dtype), batch_size)

def update(self, x=None):
t = share.load('t')
Expand Down Expand Up @@ -1672,7 +1672,7 @@ def __init__(
keep_size: bool = False,
mode: Optional[bm.Mode] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand Down Expand Up @@ -1708,7 +1708,7 @@ def __init__(
sharding=sharding,
spk_fun=spk_fun,
detach_spk=detach_spk,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,

init_var=False,
Expand Down Expand Up @@ -1991,7 +1991,7 @@ def __init__(
mode: Optional[bm.Mode] = None,
name: Optional[str] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand All @@ -2017,7 +2017,7 @@ def __init__(
spk_fun=spk_fun,
detach_spk=detach_spk,
method=method,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,
scaling=scaling)
# parameters
Expand Down Expand Up @@ -2046,7 +2046,7 @@ def derivative(self, V, t, I):

def reset_state(self, batch_size=None, **kwargs):
self.V = self.offset_scaling(self.init_variable(self._V_initializer, batch_size))
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_type), batch_size)
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_dtype), batch_size)

def update(self, x=None):
t = share.load('t')
Expand Down Expand Up @@ -2255,7 +2255,7 @@ def __init__(
keep_size: bool = False,
mode: Optional[bm.Mode] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand Down Expand Up @@ -2287,7 +2287,7 @@ def __init__(
sharding=sharding,
spk_fun=spk_fun,
detach_spk=detach_spk,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,

init_var=False,
Expand Down Expand Up @@ -2554,7 +2554,7 @@ def __init__(
mode: Optional[bm.Mode] = None,
name: Optional[str] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand Down Expand Up @@ -2583,7 +2583,7 @@ def __init__(
spk_fun=spk_fun,
detach_spk=detach_spk,
method=method,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,
scaling=scaling)
# parameters
Expand Down Expand Up @@ -2624,7 +2624,7 @@ def derivative(self):
def reset_state(self, batch_size=None, **kwargs):
self.V = self.offset_scaling(self.init_variable(self._V_initializer, batch_size))
self.w = self.std_scaling(self.init_variable(self._w_initializer, batch_size))
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_type), batch_size)
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_dtype), batch_size)

def update(self, x=None):
t = share.load('t')
Expand Down Expand Up @@ -2856,7 +2856,7 @@ def __init__(
keep_size: bool = False,
mode: Optional[bm.Mode] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand Down Expand Up @@ -2891,7 +2891,7 @@ def __init__(
sharding=sharding,
spk_fun=spk_fun,
detach_spk=detach_spk,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,

init_var=False,
Expand Down Expand Up @@ -3201,7 +3201,7 @@ def __init__(
mode: Optional[bm.Mode] = None,
name: Optional[str] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand Down Expand Up @@ -3237,7 +3237,7 @@ def __init__(
spk_fun=spk_fun,
detach_spk=detach_spk,
method=method,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,
scaling=scaling)
# parameters
Expand Down Expand Up @@ -3291,7 +3291,7 @@ def reset_state(self, batch_size=None, **kwargs):
self.V_th = self.offset_scaling(self.init_variable(self._Vth_initializer, batch_size))
self.I1 = self.std_scaling(self.init_variable(self._I1_initializer, batch_size))
self.I2 = self.std_scaling(self.init_variable(self._I2_initializer, batch_size))
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_type), batch_size)
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_dtype), batch_size)

def update(self, x=None):
t = share.load('t')
Expand Down Expand Up @@ -3581,7 +3581,7 @@ def __init__(
keep_size: bool = False,
mode: Optional[bm.Mode] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand Down Expand Up @@ -3623,7 +3623,7 @@ def __init__(
sharding=sharding,
spk_fun=spk_fun,
detach_spk=detach_spk,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,

init_var=False,
Expand Down Expand Up @@ -3952,7 +3952,7 @@ def __init__(
mode: Optional[bm.Mode] = None,
name: Optional[str] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand Down Expand Up @@ -3982,7 +3982,7 @@ def __init__(
spk_fun=spk_fun,
detach_spk=detach_spk,
method=method,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,
scaling=scaling)
# parameters
Expand Down Expand Up @@ -4031,7 +4031,7 @@ def reset_state(self, batch_size=None, **kwargs):
self.V = self.offset_scaling(self.V)
self.u = self.offset_scaling(self.init_variable(self._u_initializer, batch_size), bias=self.b * self.scaling.bias,
scale=self.scaling.scale)
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_type), batch_size)
self.spike = self.init_variable(partial(bm.zeros, dtype=self.spk_dtype), batch_size)

def update(self, x=None):
t = share.load('t')
Expand Down Expand Up @@ -4266,7 +4266,7 @@ def __init__(
keep_size: bool = False,
mode: Optional[bm.Mode] = None,
spk_fun: Callable = bm.surrogate.InvSquareGrad(),
spk_type: Any = None,
spk_dtype: Any = None,
spk_reset: str = 'soft',
detach_spk: bool = False,
method: str = 'exp_auto',
Expand Down Expand Up @@ -4302,7 +4302,7 @@ def __init__(
sharding=sharding,
spk_fun=spk_fun,
detach_spk=detach_spk,
spk_type=spk_type,
spk_dtype=spk_dtype,
spk_reset=spk_reset,

init_var=False,
Expand Down
2 changes: 2 additions & 0 deletions brainpy/_src/math/ndarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -1518,6 +1518,8 @@ def float(self): return jnp.asarray(self.value, dtype=jnp.float32)
def double(self): return jnp.asarray(self.value, dtype=jnp.float64)


setattr(Array, "__array_priority__", 100)

JaxArray = Array
ndarray = Array

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -111,3 +111,14 @@ def test_update(self):
)

self.assertTrue(view.sum() == bm.sum(bm.arange(5) + 10))


class TestArrayPriority(unittest.TestCase):
def test1(self):
a = bm.Array(bm.zeros(10))
assert isinstance(a + bm.ones(1).value, bm.Array)
assert isinstance(a + np.ones(1), bm.Array)
assert isinstance(a * np.ones(1), bm.Array)
assert isinstance(np.ones(1) + a, bm.Array)
assert isinstance(np.ones(1) * a, bm.Array)