Skip to content

Commit

Permalink
Numerical evaluation of Fourier transform of Daubechies scaling funct…
Browse files Browse the repository at this point in the history
…ions. [ci skip] [CI SKIP]
  • Loading branch information
NAThompson committed Feb 6, 2023
1 parent 4aac532 commit 6db459e
Show file tree
Hide file tree
Showing 9 changed files with 608 additions and 1 deletion.
Binary file added doc/graphs/fourier_transform_daubechies.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
17 changes: 17 additions & 0 deletions doc/sf/daubechies.qbk
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,23 @@ The 2 vanishing moment scaling function.
[$../graphs/daubechies_8_scaling.svg]
The 8 vanishing moment scaling function.

Boost.Math also provides numerical evaluation of the Fourier transform of these functions.
This is useful in sparse recovery problems where the measurements are taken in the Fourier basis.
The usage is exhibited below:

#include <boost/math/special_functions/fourier_transform_daubechies_scaling.hpp>
using boost::math::fourier_transform_daubechies_scaling;
// Evaluate the Fourier transform of the 4-vanishing moment Daubechies scaling function at ω=1.8:
std::complex<float> hat_phi = fourier_transform_daubechies_scaling<float, 4>(1.8f);

The Fourier transform convention is unitary with the sign of i being given in Daubechies Ten Lectures.
In particular, this means that `fourier_transform_daubechies_scaling<float, p>(0.0)` returns 1/sqrt(2π).

The implementation computes an infinite product of trigonometric polynomials as can be found from recursive application of the identity 𝓕[φ](ω) = m(ω/2)𝓕[φ](ω/2).
This is neither particularly fast nor accurate, but there appears to be no literature on this extremely useful topic, and hence the naive method must suffice.

[$../graphs/fourier_transform_daubechies.png]

[heading References]

* Daubechies, Ingrid. ['Ten Lectures on Wavelets.] Vol. 61. Siam, 1992.
Expand Down
38 changes: 38 additions & 0 deletions example/calculate_fourier_transform_daubechies_constants.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
#include <utility>
#include <boost/math/filters/daubechies.hpp>
#include <boost/math/tools/polynomial.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/math/constants/constants.hpp>

using std::pow;
using boost::multiprecision::cpp_bin_float_100;
using boost::math::filters::daubechies_scaling_filter;
using boost::math::tools::polynomial;
using boost::math::constants::half;
using boost::math::constants::root_two;

template<typename Real, size_t N>
std::vector<Real> get_constants() {
auto h = daubechies_scaling_filter<cpp_bin_float_100, N>();
auto p = polynomial<cpp_bin_float_100>(h.begin(), h.end());

auto q = polynomial({half<cpp_bin_float_100>(), half<cpp_bin_float_100>()});
q = pow(q, N);
auto l = p/q;
return l.data();
}

template<typename Real>
void print_constants(std::vector<Real> const & l) {
std::cout << std::setprecision(std::numeric_limits<Real>::digits10 -10);
std::cout << "return std::array<Real, " << l.size() << ">{";
for (size_t i = 0; i < l.size() - 1; ++i) {
std::cout << "BOOST_MATH_BIG_CONSTANT(Real, std::numeric_limits<Real>::digits, " << l[i]/root_two<Real>() << "), ";
}
std::cout << "BOOST_MATH_BIG_CONSTANT(Real, std::numeric_limits<Real>::digits, " << l.back()/root_two<Real>() << ")};\n";
}

int main() {
auto constants = get_constants<cpp_bin_float_100, 1>();
print_constants(constants);
}
54 changes: 54 additions & 0 deletions example/fourier_transform_daubechies_ulp_plot.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
#include <boost/math/special_functions/fourier_transform_daubechies_scaling.hpp>
#include <boost/math/tools/ulps_plot.hpp>

using boost::math::fourier_transform_daubechies_scaling;
using boost::math::tools::ulps_plot;

template<int p>
void real_part() {
auto phi_real_hi_acc = [](double omega) {
auto z = fourier_transform_daubechies_scaling<double, p>(omega);
return z.real();
};

auto phi_real_lo_acc = [](float omega) {
auto z = fourier_transform_daubechies_scaling<float, p>(omega);
return z.real();
};
auto plot = ulps_plot<decltype(phi_real_hi_acc), double, float>(phi_real_hi_acc, float(0.0), float(100.0), 20000);
plot.ulp_envelope(false);
plot.add_fn(phi_real_lo_acc);
plot.clip(100);
plot.title("Accuracy of 𝔑(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
plot.write("real_ft_daub_scaling_" + std::to_string(p) + ".svg");

}

template<int p>
void imaginary_part() {
auto phi_imag_hi_acc = [](double omega) {
auto z = fourier_transform_daubechies_scaling<double, p>(omega);
return z.imag();
};

auto phi_imag_lo_acc = [](float omega) {
auto z = fourier_transform_daubechies_scaling<float, p>(omega);
return z.imag();
};
auto plot = ulps_plot<decltype(phi_imag_hi_acc), double, float>(phi_imag_hi_acc, float(0.0), float(100.0), 20000);
plot.ulp_envelope(false);
plot.add_fn(phi_imag_lo_acc);
plot.clip(100);
plot.title("Accuracy of 𝕴(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
plot.write("imag_ft_daub_scaling_" + std::to_string(p) + ".svg");

}


int main() {
real_part<3>();
imaginary_part<3>();
real_part<6>();
imaginary_part<6>();
return 0;
}
Loading

0 comments on commit 6db459e

Please sign in to comment.