Skip to content

boostcampaitech7/level2-objectdetection-cv-10

Repository files navigation

Object Detection for classification of recycled items

📘Overview

2024.10.02 ~ 2024.10.24

This project focuses on detecting objects in recycling trash images as part of a private competition organized by Naver Connect Foundation and Upstage.

📘Contributors

김기수 문채원 안주형 은의찬 이재훈 장지우






📘Wrap up Report

Here's our link

📘Metrics

  • mAP50

https://user-images.githubusercontent.com/64190071/164357745-4d03deb3-6104-4706-a890-3d002a904067.png

https://user-images.githubusercontent.com/64190071/164357754-718a8628-872e-4f1e-9d12-4e212b2444ab.png

https://user-images.githubusercontent.com/64190071/164357763-9d7c667a-2c5a-4b92-b4ae-6c32be0b7d34.png

📰Tools

  • github
  • notion
  • slack
  • wandb

📰Folder Structure


├── mmdetection2
│   ├── configs
│   ├──projects/configs/custom
│   ├── inference_wbf.py
│   ├── train.py
│   └── etc
├── mmdetection3
│   └── config files
├── Ultralytics
│   ├── RT_DETR.ipynb
│   ├── RT_DETR_WBF_infernece.ipynb
│   ├── Yolov11.ipynb
│   └── Yolov11_WBF_infernece.ipynb
├── data_split.py
├── eda.ipynb
├── visualization_data.ipynb
└── wbf.py

📰Dataset Structure


├── dataset
    ├── train.json
    ├── test.json
    ├── train
    └── test

  • images : 9754
    • train : 4883
    • test : 4871
  • 10 class : General trash, Paper, Paper pack, Metal, Glass, Plastic, Styrofoam, Plastic bag, Battery, Clothing
  • image size : (1024, 1024)

📰Models

  • Faster-RCNN
  • Cascade-RCNN
  • Atss
  • YOLOs(3, 5, 9, x)
  • Co-Deformable-DETR
  • RetinaNet
  • YOLOv11
  • Co-DINO
  • RT-DETR

📰Backbones

  • Swin Transformer
  • Resnet

📰Experiments

image

train_batch9921_41_46441c1a381ad986227e

Exp mAP
Yolov11(5), RT-DETR(5), CO-DINO(2) 0.6760
Co-dino_r50(2), Co-dino_swin(5) 0.6590
Co-dino_swin(5),Co-dino_r50(2),RT-DETR(5) 0.6797
Co_dino_swin(5), RT-DETR(5), Yolov11(5) 0.6834

About

level2-objectdetection-cv-10 created by GitHub Classroom

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published