Skip to content

Commit

Permalink
update documents
Browse files Browse the repository at this point in the history
  • Loading branch information
snoop2head committed Aug 27, 2021
1 parent 350b585 commit 5cb5a04
Show file tree
Hide file tree
Showing 2 changed files with 42 additions and 0 deletions.
6 changes: 6 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,12 @@

Template for the competition.

### Team Links
- [📷 Zoom 회의실 23](https://zoom.us/j/97196865381?pwd=ckxjdkhLV3EzSEI5L3FhNC9WaVg3dz09)
- [📂 구글 드라이브(Drive)](https://drive.google.com/drive/u/2/folders/1oI71ZYms5crDxkE1xR9LryRzn45wTP4W)
- [🎯 Google Group Admin Panel](https://groups.google.com/g/temp-boostcamp-ai/members)


### Dependencies
- torch==1.6.0
- torchvision==0.7.0
Expand Down
36 changes: 36 additions & 0 deletions TODO.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
- [x] Make Inference Function
- [x] Ensemble and submit
- [x] Fix Resnet Code
- [x] Apply Resnet Code
- [x] reallocate local dataset loader according to right path format(input/data not input/)
- [x] reallocate local dataset including jpeg, png format
- [x] Change the code, clean dataset on upstage server
- [x] check class order vs output prediction order -> fixed with class_to_idx
- [x] Make dev environment on colab
- [x] should i set shuffle=True for test data loader? -> No.
- [x] Start making from dataloader
- [ ] visualize the predicted result of the csv - label and picture
- [ ] Visualize using Confusion Matrix to check accuracy [example](https://github.com/snoop2head/ml_classification_tutorial/blob/main/ML_Classification.ipynb)
- [x] Getting F1 score
- [ ] Apply transformation to age
- [ ] Apply Augmentation (imgaug)
- [ ] Use SGD, SGDP as optimizer. SGD outperforms Adam.
- [x] Apply ResNext50 example 1
- [x] Apply EfficientNet
- [ ] Apply ViT
- [ ] https://github.com/lukemelas/PyTorch-Pretrained-ViT
- [ ] https://github.com/lucidrains/vit-pytorch
- [ ] Retinaface, dlib -> else: centercrop
- [ ] Mask detection model (mobilenet) -> face extraction
- [ ] Get mask & face dataset, overlay on face
- [ ] opencv mask / overlay mask on the face
- [ ] Get mask & face dataset, move mask downwards, make it as incorrect dataset
- [ ] face detection and crop -> VERY IMPORTANT. Mask position on face determines incorrect vs correct
- [ ] add 59 years old, 58 years old to 60 years old and above class
- [ ] early stopping on age (epoch 10 is too much already)
- [ ] label 0 and 1 as classes, not integers. too time consuming to figure out which is which
- [ ] 연주님: 하나의 모델에서 레이어를 각각각 써서 하나의 결과값으로 나오게 하는 것. -> Multimodal
- [x] Training set에 대해서 모든 Class에 대한 데이터 개수를 동일하게 설정하려고 했는데(Sampling) 그게 올바르지 않는 접근 방법이었다.
- [ ] Age Distribution(Age <= 20, Age <58, else)로 분류를 하는 게 좋을 것 같다.
- [ ] 60살 이상의 노인 이미지를 인터넷에서 가져오는 게 필요할 것 같다.
- [x] 9:1이랑 8:1의 차이가 없었다.

0 comments on commit 5cb5a04

Please sign in to comment.