forked from deepspeedai/DeepSpeed
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix+tests for get_lr from lr_scheduler before training starts (deepsp…
…eedai#310) * add fix and tests for get_lr from lr_scheduler before training starts
- Loading branch information
Showing
2 changed files
with
63 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import torch | ||
import deepspeed | ||
import argparse | ||
import pytest | ||
import json | ||
import os | ||
from common import distributed_test | ||
from simple_model import SimpleModel, SimpleOptimizer, random_dataloader, args_from_dict | ||
|
||
|
||
@pytest.mark.parametrize("scheduler_type,params", | ||
[("WarmupLR", | ||
{}), | ||
("OneCycle", | ||
{ | ||
'cycle_min_lr': 0, | ||
'cycle_max_lr': 0 | ||
}), | ||
("LRRangeTest", | ||
{})]) | ||
def test_get_lr_before_train(tmpdir, scheduler_type, params): | ||
config_dict = { | ||
"train_batch_size": 2, | ||
"steps_per_print": 1, | ||
"optimizer": { | ||
"type": "Adam", | ||
"params": { | ||
"lr": 0.00015 | ||
}, | ||
}, | ||
"scheduler": { | ||
"type": scheduler_type, | ||
"params": params | ||
}, | ||
"gradient_clipping": 1.0 | ||
} | ||
args = args_from_dict(tmpdir, config_dict) | ||
hidden_dim = 10 | ||
|
||
model = SimpleModel(hidden_dim, empty_grad=False) | ||
|
||
@distributed_test(world_size=[1]) | ||
def _test_get_lr_before_train(args, model, hidden_dim): | ||
model, _, _, lr_scheduler = deepspeed.initialize(args=args, | ||
model=model, | ||
model_parameters=model.parameters()) | ||
data_loader = random_dataloader(model=model, | ||
total_samples=50, | ||
hidden_dim=hidden_dim, | ||
device=model.device, | ||
dtype=torch.float) | ||
for n, batch in enumerate(data_loader): | ||
# get lr before training starts | ||
lr_scheduler.get_lr() | ||
loss = model(batch[0], batch[1]) | ||
model.backward(loss) | ||
model.step() | ||
|
||
_test_get_lr_before_train(args=args, model=model, hidden_dim=hidden_dim) |