Skip to content

Commit

Permalink
Merge pull request #1 from blakeblackshear/regions
Browse files Browse the repository at this point in the history
Regions
  • Loading branch information
blakeblackshear authored Feb 9, 2019
2 parents 72393be + 3e42566 commit 6e8409d
Show file tree
Hide file tree
Showing 3 changed files with 178 additions and 64 deletions.
12 changes: 6 additions & 6 deletions Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -61,17 +61,17 @@ RUN cd /usr/local/src/ \
RUN jupyter nbextension enable --py --sys-prefix widgetsnbextension

# Download & build OpenCV
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/3.4.1.zip
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
RUN cd /usr/local/src/ \
&& unzip 3.4.1.zip \
&& rm 3.4.1.zip \
&& cd /usr/local/src/opencv-3.4.1/ \
&& unzip 4.0.1.zip \
&& rm 4.0.1.zip \
&& cd /usr/local/src/opencv-4.0.1/ \
&& mkdir build \
&& cd /usr/local/src/opencv-3.4.1/build \
&& cd /usr/local/src/opencv-4.0.1/build \
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
&& make -j4 \
&& make install \
&& rm -rf /usr/local/src/opencv-3.4.1
&& rm -rf /usr/local/src/opencv-4.0.1

# Minimize image size
RUN (apt-get autoremove -y; \
Expand Down
43 changes: 39 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,10 +1,12 @@
# Realtime Object Detection for RTSP Cameras
This results in a MJPEG stream with objects identified that has a lower latency than directly viewing the RTSP feed with VLC.
- Prioritizes realtime processing over frames per second. Dropping frames is fine.
- OpenCV runs in a separate process so it can grab frames as quickly as possible to ensure there aren't old frames in the buffer
- Object detection with Tensorflow runs in a separate process and ignores frames that are more than 0.5 seconds old
- Uses shared memory arrays for handing frames between processes
- Provides a url for viewing the video feed at a hard coded ~5FPS as an mjpeg stream
- Frames are only encoded into mjpeg stream when it is being viewed
- A process is created per detection region

## Getting Started
Build the container with
Expand All @@ -23,13 +25,46 @@ docker run -it --rm \
-v <path_to_labelmap.pbtext>:/label_map.pbtext:ro \
-p 5000:5000 \
-e RTSP_URL='<rtsp_url>' \
-e REGIONS='<box_size_1>,<x_offset_1>,<y_offset_1>:<box_size_2>,<x_offset_2>,<y_offset_2>' \
realtime-od:latest
```

Access the mjpeg stream at http://localhost:5000

## Tips
- Lower the framerate of the RTSP feed on the camera to what you want to reduce the CPU usage for capturing the feed
- Use SSDLite models

## Future improvements
- MQTT messages when detected objects change
- Dynamic changes to processing speed, ie. only process 1FPS unless motion detected
- Break incoming frame into multiple smaller images and run detection in parallel for lower latency (rather than input a lower resolution)
- Parallel processing to increase FPS
- [ ] Look for a subset of object types
- [ ] Try and simplify the tensorflow model to just look for the objects we care about
- [ ] MQTT messages when detected objects change
- [ ] Implement basic motion detection with opencv and only look for objects in the regions with detected motion
- [ ] Dynamic changes to processing speed, ie. only process 1FPS unless motion detected
- [x] Parallel processing to increase FPS
- [ ] Look into GPU accelerated decoding of RTSP stream
- [ ] Send video over a socket and use JSMPEG

## Building Tensorflow from source for CPU optimizations
https://www.tensorflow.org/install/source#docker_linux_builds
used `tensorflow/tensorflow:1.12.0-devel-py3`

## Optimizing the graph (cant say I saw much difference in CPU usage)
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md#optimizing-for-deployment
```
docker run -it -v ${PWD}:/lab -v ${PWD}/../back_camera_model/models/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb:/frozen_inference_graph.pb:ro tensorflow/tensorflow:1.12.0-devel-py3 bash
bazel build tensorflow/tools/graph_transforms:transform_graph
bazel-bin/tensorflow/tools/graph_transforms/transform_graph \
--in_graph=/frozen_inference_graph.pb \
--out_graph=/lab/optimized_inception_graph.pb \
--inputs='image_tensor' \
--outputs='num_detections,detection_scores,detection_boxes,detection_classes' \
--transforms='
strip_unused_nodes(type=float, shape="1,300,300,3")
remove_nodes(op=Identity, op=CheckNumerics)
fold_constants(ignore_errors=true)
fold_batch_norms
fold_old_batch_norms'
```
187 changes: 133 additions & 54 deletions detect_objects.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import ctypes
import logging
import multiprocessing as mp
import threading
from contextlib import closing
import numpy as np
import tensorflow as tf
Expand All @@ -23,15 +24,20 @@
# TODO: make dynamic?
NUM_CLASSES = 90

#REGIONS = "600,0,380:600,600,380:600,1200,380"
REGIONS = os.getenv('REGIONS')

DETECTED_OBJECTS = []

# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)

def detect_objects(image_np, sess, detection_graph):
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

# Each box represents a part of the image where a particular object was detected.
Expand All @@ -51,25 +57,55 @@ def detect_objects(image_np, sess, detection_graph):
# build an array of detected objects
objects = []
for index, value in enumerate(classes[0]):
object_dict = {}
if scores[0, index] > 0.5:
object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
scores[0, index]
objects.append(object_dict)

# draw boxes for detected objects on image
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)

return objects, image_np
score = scores[0, index]
if score > 0.1:
box = boxes[0, index].tolist()
box[0] = (box[0] * region_size) + region_y_offset
box[1] = (box[1] * region_size) + region_x_offset
box[2] = (box[2] * region_size) + region_y_offset
box[3] = (box[3] * region_size) + region_x_offset
objects += [value, scores[0, index]] + box
# only get the first 10 objects
if len(objects) == 60:
break

return objects

class ObjectParser(threading.Thread):
def __init__(self, object_arrays):
threading.Thread.__init__(self)
self._object_arrays = object_arrays

def run(self):
global DETECTED_OBJECTS
while True:
detected_objects = []
for object_array in self._object_arrays:
object_index = 0
while(object_index < 60 and object_array[object_index] > 0):
object_class = object_array[object_index]
detected_objects.append({
'name': str(category_index.get(object_class).get('name')),
'score': object_array[object_index+1],
'ymin': int(object_array[object_index+2]),
'xmin': int(object_array[object_index+3]),
'ymax': int(object_array[object_index+4]),
'xmax': int(object_array[object_index+5])
})
object_index += 6
DETECTED_OBJECTS = detected_objects
time.sleep(0.01)

def main():
# Parse selected regions
regions = []
for region_string in REGIONS.split(':'):
region_parts = region_string.split(',')
regions.append({
'size': int(region_parts[0]),
'x_offset': int(region_parts[1]),
'y_offset': int(region_parts[2])
})
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(RTSP_URL)
Expand All @@ -81,31 +117,45 @@ def main():
exit(1)
video.release()

# create shared value for storing the time the frame was captured
# note: this must be a double even though the value you are storing
# is a float. otherwise it stops updating the value in shared
# memory. probably something to do with the size of the memory block
shared_frame_time = mp.Value('d', 0.0)
shared_memory_objects = []
for region in regions:
shared_memory_objects.append({
# create shared value for storing the time the frame was captured
# note: this must be a double even though the value you are storing
# is a float. otherwise it stops updating the value in shared
# memory. probably something to do with the size of the memory block
'frame_time': mp.Value('d', 0.0),
# create shared array for storing 10 detected objects
'output_array': mp.Array(ctypes.c_double, 6*10)
})

# compute the flattened array length from the array shape
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for passing the image data from capture to detect_objects
# create shared array for storing the full frame image data
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# create shared array for passing the image data from detect_objects to flask
shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# create a numpy array with the image shape from the shared memory array
# this is used by flask to output an mjpeg stream
frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)

capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, frame_shape))
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, [obj['frame_time'] for obj in shared_memory_objects], frame_shape))
capture_process.daemon = True

detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape))
detection_process.daemon = True
detection_processes = []
for index, region in enumerate(regions):
detection_process = mp.Process(target=process_frames, args=(shared_arr,
shared_memory_objects[index]['output_array'],
shared_memory_objects[index]['frame_time'], frame_shape,
region['size'], region['x_offset'], region['y_offset']))
detection_process.daemon = True
detection_processes.append(detection_process)

object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
object_parser.start()

capture_process.start()
print("capture_process pid ", capture_process.pid)
detection_process.start()
print("detection_process pid ", detection_process.pid)
for detection_process in detection_processes:
detection_process.start()
print("detection_process pid ", detection_process.pid)

app = Flask(__name__)

Expand All @@ -115,28 +165,53 @@ def index():
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
global DETECTED_OBJECTS
while True:
# max out at 5 FPS
time.sleep(0.2)
# make a copy of the current detected objects
detected_objects = DETECTED_OBJECTS.copy()
# make a copy of the current frame
frame = frame_arr.copy()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in DETECTED_OBJECTS:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)

for region in regions:
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
(255,255,255), 2)
# convert back to BGR
frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame_bgr)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')

app.run(host='0.0.0.0', debug=False)

capture_process.join()
detection_process.join()
for detection_process in detection_processes:
detection_process.join()
object_parser.join()

# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)

# fetch the frames as fast a possible, only decoding the frames when the
# detection_process has consumed the current frame
def fetch_frames(shared_arr, shared_frame_time, frame_shape):
def fetch_frames(shared_arr, shared_frame_times, frame_shape):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)

Expand All @@ -153,23 +228,24 @@ def fetch_frames(shared_arr, shared_frame_time, frame_shape):
if ret:
# if the detection_process is ready for the next frame decode it
# otherwise skip this frame and move onto the next one
if shared_frame_time.value == 0.0:
if all(shared_frame_time.value == 0.0 for shared_frame_time in shared_frame_times):
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# copy the frame into the numpy array
arr[:] = frame
# signal to the detection_process by setting the shared_frame_time
shared_frame_time.value = frame_time.timestamp()
# signal to the detection_processes by setting the shared_frame_time
for shared_frame_time in shared_frame_times:
shared_frame_time.value = frame_time.timestamp()
else:
# sleep a little to reduce CPU usage
time.sleep(0.01)

video.release()

# do the actual object detection
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape):
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape, region_size, region_x_offset, region_y_offset):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# shape shared output array into frame so it can be copied into
output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)

# Load a (frozen) Tensorflow model into memory before the processing loop
detection_graph = tf.Graph()
Expand All @@ -193,6 +269,9 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
time.sleep(1)
print("sleeping because no frames have been available in a while")
else:
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
continue

# we got a valid frame, so reset the timer
Expand All @@ -202,22 +281,22 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
# signal that we need a new frame
shared_frame_time.value = 0.0
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
continue

# make a copy of the frame
frame = arr.copy()
# make a copy of the cropped frame
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
frame_time = shared_frame_time.value
# signal that the frame has been used so a new one will be ready
shared_frame_time.value = 0.0

# convert to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# do the object detection
objects, frame_overlay = detect_objects(frame_rgb, sess, detection_graph)
# copy the output frame with the bounding boxes to the output array
output_arr[:] = frame_overlay
if(len(objects) > 0):
print(objects)
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
# copy the detected objects to the output array, filling the array when needed
shared_output_arr[:] = objects + [0.0] * (60-len(objects))

if __name__ == '__main__':
mp.freeze_support()
Expand Down

0 comments on commit 6e8409d

Please sign in to comment.