Skip to content

bioinf-mcb/q2-predict-dysbiosis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NOTE !!!

This has been temporarily moved to: https://github.com/Kizielins/q2-predict-dysbiosis/tree/master

QIIME 2 plugin for calculating dysbiosis score from gut microbiome data. A greater score indicates better health.

Installation

To install the most up to date version of the plugin:

  • Install and activate conda environment with QIIME 2 (see docs), e.g. for Linux 64-bit. Note that this plugin is currently only available in the QIIME 2 dev version. This should only take a few minutes:
    wget https://raw.githubusercontent.com/qiime2/environment-files/master/latest/staging/qiime2-latest-py38-linux-conda.yml
    conda env create -n qiime2-dev --file qiime2-latest-py38-linux-conda.yml
    rm qiime2-latest-py38-linux-conda.yml
    conda activate qiime2-dev
    qiime info
    

Note that the plugin was tested with qiime2-2022.2 .

  • Fetch the repository and go to main folder:
    git clone https://github.com/Kizielins/q2-predict-dysbiosis.git
    cd q2-predict-dysbiosis
    
  • Install plugin:
    pip install -e .
    python setup.py install
    
  • Test plugin e.g.: qiime predict-dysbiosis --help

Input prep:

Sample inputs can be found in the "test_data" folder.

  • Taxonomy table: standard QIIME 2 *qza feature table, collapsed to species level, with removed "s__" and underscores instead of spaces (ie "Escherichia_coli")
  • Stratified pathways table: standard QIIME 2 *qza feature table, produced by HUMAnNN, collapsed to species level, with underscores instead of spaces (ie ANAEROFRUCAT-PWY:_homolactic_fermentation|g__Citrobacter.s__Citrobacter_freundii)
  • Unstratified pathways table: standard QIIME 2 *qza feature table, produced by HUMAnNN, with underscores instead of spaces (ie AEROBACTINSYN-PWY:_aerobactin_biosynthesis)
  • Metadata: standard QIIME 2 metadata format, with "id" and columns representing sample IDs and labelling.

The values in all tables should be expressed as relative abundance.

Predict dysbiosis index

Usage: qiime predict-dysbiosis calculate-index [OPTIONS]
Dysbiosis index predicts the gut microbiome health index for each sample in the abundance table.

Inputs:

--i-table ARTIFACT FeatureTable[RelativeFrequency]
Abundance table artifact with taxonomy collapsed to species level.

--i-pathways-stratified ARTIFACT FeatureTable[RelativeFrequency]
Abundance table artifact with stratified pathways.

--i-pathways-unstratified ARTIFACT FeatureTable[RelativeFrequency]
Abundance table artifact with unstratified pathways.

Outputs:

--o-dysbiosis-predictions ARTIFACT SampleData[AlphaDiversity]
Predicted dysbiosis index in tabular form.

Predict and visualize dysbiosis index

Usage: qiime predict-dysbiosis calculate-index-viz [OPTIONS]
Dysbiosis index predicts the gut microbiome health index for each sample in the abundance table.

Inputs:

--i-table ARTIFACT FeatureTable[RelativeFrequency]
Abundance table artifact with taxonomy collapsed to species level.

--i-pathways-stratified ARTIFACT FeatureTable[RelativeFrequency]
Abundance table artifact with stratified pathways.

--i-pathways-unstratified ARTIFACT FeatureTable[RelativeFrequency]
Abundance table artifact with unstratified pathways.

--m-metadata-file ARTIFACT
Metadata file.

Outputs:

--o-index_results ARTIFACT SampleData[AlphaDiversity]
Predicted dysbiosis index in tabular form.

--o-index_results ARTIFACT Visualization
Predicted dysbiosis index visualization file.

Sample use

Calculate index:

qiime predict-dysbiosis calculate-index --i-table test_files/taxonomy.qza --i-pathways-stratified test_files/pathways_stratified.qza --i-pathways-unstratified test_files/pathways_unstratified.qza --o-dysbiosis-predictions results.qza

Calculate and visualize index:

qiime predict-dysbiosis calculate-index-viz --i-table test_files/taxonomy.qza --i-pathways-stratified test_files/pathways_stratified.qza --i-pathways-unstratified test_files/pathways_unstratified.qza --m-metadata-file test_files/metadata.txt --o-index-results results.qza --o-index-plot visualization.qzv

Both commands should take a few minutes to run, depending on the size of your input (~30s per sample).

Original publication / citation

If you want to learn more about this method, or to cite it, please refer to our article: https://www.biorxiv.org/content/10.1101/2023.12.04.569909v4

A full script to reproduce all figures in the article will be available shortly.

Acknowledgements

We would like to acknowledge the Authors of the q2-health-index plugin, whose scripts formed the foundation of our work.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages