Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix #90 #93

Merged
merged 3 commits into from
Oct 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 16 additions & 11 deletions birdman/inference.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from functools import partial
from typing import List, Sequence, Union

import arviz as az
Expand All @@ -21,18 +22,25 @@ def fit_to_inference(
if posterior_predictive is not None and posterior_predictive not in dims:
raise KeyError("Must include dimensions for posterior predictive!")

# Required because as of writing, CmdStanVB.stan_variable defaults to
# returning the mean rather than the sample
if isinstance(fit, CmdStanVB):
stan_var_fn = partial(fit.stan_variable, mean=False)
else:
stan_var_fn = fit.stan_variable

das = dict()

for param in params:
data = fit.stan_variable(param)
data = stan_var_fn(param)

_dims = dims[param]
_coords = {k: coords[k] for k in _dims}

das[param] = stan_var_to_da(data, _coords, _dims, chains, draws)

if log_likelihood:
data = fit.stan_variable(log_likelihood)
data = stan_var_fn(log_likelihood)

_dims = dims[log_likelihood]
_coords = {k: coords[k] for k in _dims}
Expand All @@ -43,7 +51,7 @@ def fit_to_inference(
ll_ds = None

if posterior_predictive:
data = fit.stan_variable(posterior_predictive)
data = stan_var_fn(posterior_predictive)

_dims = dims[posterior_predictive]
_coords = {k: coords[k] for k in _dims}
Expand Down Expand Up @@ -84,21 +92,19 @@ def concatenate_inferences(
"""
group_list = []
group_list.append([x.posterior for x in inf_list])
group_list.append([x.sample_stats for x in inf_list])
if "log_likelihood" in inf_list[0].groups():
group_list.append([x.log_likelihood for x in inf_list])
if "posterior_predictive" in inf_list[0].groups():
group_list.append([x.posterior_predictive for x in inf_list])

po_ds = xr.concat(group_list[0], concatenation_name)
ss_ds = xr.concat(group_list[1], concatenation_name)
group_dict = {"posterior": po_ds, "sample_stats": ss_ds}
group_dict = {"posterior": po_ds}

if "log_likelihood" in inf_list[0].groups():
ll_ds = xr.concat(group_list[2], concatenation_name)
ll_ds = xr.concat(group_list[1], concatenation_name)
group_dict["log_likelihood"] = ll_ds
if "posterior_predictive" in inf_list[0].groups():
pp_ds = xr.concat(group_list[3], concatenation_name)
pp_ds = xr.concat(group_list[2], concatenation_name)
group_dict["posterior_predictive"] = pp_ds

all_group_inferences = []
Expand All @@ -114,16 +120,15 @@ def concatenate_inferences(
return az.concat(*all_group_inferences)


# TODO: Fix docstring
def stan_var_to_da(
data: np.ndarray,
coords: dict,
dims: dict,
chains: int,
draws: int
):
"""Convert Stan variable draws to xr.DataArray.

"""
"""Convert Stan variable draws to xr.DataArray."""
data = np.stack(np.split(data, chains))

coords["draw"] = np.arange(draws)
Expand Down
30 changes: 30 additions & 0 deletions tests/test_inference.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
import numpy as np
import pytest

from birdman import inference as mu
from birdman.default_models import NegativeBinomialSingle
from birdman import ModelIterator


class TestToInference:
Expand Down Expand Up @@ -78,3 +81,30 @@ def test_serial_ppll(self, example_model):
nb_data = example_model.fit.stan_variable(v)
nb_data = np.array(np.split(nb_data, 4, axis=0))
np.testing.assert_array_almost_equal(nb_data, inf_data)


@pytest.mark.parametrize("method", ["mcmc", "vi"])
def test_concat(table_biom, metadata, method):
tbl = table_biom
md = metadata

model_iterator = ModelIterator(
table=tbl,
model=NegativeBinomialSingle,
formula="host_common_name",
metadata=md,
)

infs = []
for fname, model in model_iterator:
model.compile_model()
model.fit_model(method, num_draws=100)
infs.append(model.to_inference())

inf_concat = mu.concatenate_inferences(
infs,
coords={"feature": tbl.ids("observation")},
)
exp_feat_ids = tbl.ids("observation")
feat_ids = inf_concat.posterior.coords["feature"].to_numpy()
assert (exp_feat_ids == feat_ids).all()
Loading