Skip to content

Commit

Permalink
Fix Bioconductor warnings before release
Browse files Browse the repository at this point in the history
Bioconductor Warnings
  • Loading branch information
jjjermiah authored Apr 16, 2024
2 parents 43cadc9 + c4967cc commit 3dab6c1
Show file tree
Hide file tree
Showing 18 changed files with 230 additions and 303 deletions.
1 change: 1 addition & 0 deletions .Rbuildignore
Original file line number Diff line number Diff line change
Expand Up @@ -6,3 +6,4 @@ CONTRIBUTING.md
^docs$
^pkgdown$
^LICENSE\.md$
.github
4 changes: 0 additions & 4 deletions .github/workflows/R-CMD-check-bioc.yml
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,6 @@

on:
push:
branches:
- master
- main
- devel
pull_request:
branches:
- master
Expand Down
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
Package: PharmacoGx
Type: Package
Title: Analysis of Large-Scale Pharmacogenomic Data
Version: 3.7.2
Date: 2024-02-02
Version: 3.7.5
Date: 2024-04-08
Authors@R: c(
person(given="Petr", family="Smirnov", email="[email protected]",
role=c("aut")),
Expand Down
16 changes: 0 additions & 16 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -111,8 +111,6 @@ importClassesFrom(CoreGx,CoreSet)
importClassesFrom(CoreGx,LongTable)
importClassesFrom(CoreGx,TreatmentResponseExperiment)
importClassesFrom(MultiAssayExperiment,MultiAssayExperiment)
importClassesFrom(S4Vectors,DataFrame)
importClassesFrom(S4Vectors,List)
importFrom(Biobase,AnnotatedDataFrame)
importFrom(BiocParallel,bplapply)
importFrom(CoreGx,"sampleInfo<-")
Expand Down Expand Up @@ -145,7 +143,6 @@ importFrom(CoreGx,sampleNames)
importFrom(CoreGx,subsetByFeature)
importFrom(CoreGx,treatmentNames)
importFrom(CoreGx,updateSampleId)
importFrom(MultiAssayExperiment,MultiAssayExperiment)
importFrom(S4Vectors,DataFrame)
importFrom(S4Vectors,SimpleList)
importFrom(S4Vectors,metadata)
Expand All @@ -162,22 +159,11 @@ importFrom(SummarizedExperiment,colData)
importFrom(SummarizedExperiment,rowData)
importFrom(boot,boot)
importFrom(boot,boot.ci)
importFrom(checkmate,assert)
importFrom(checkmate,assertCharacter)
importFrom(checkmate,assertClass)
importFrom(checkmate,assertDataFrame)
importFrom(checkmate,assertDataTable)
importFrom(checkmate,assertInt)
importFrom(checkmate,assertList)
importFrom(checkmate,assertLogical)
importFrom(checkmate,assertNumeric)
importFrom(checkmate,assertSubset)
importFrom(coop,pcor)
importFrom(data.table,":=")
importFrom(data.table,as.data.table)
importFrom(data.table,data.table)
importFrom(data.table,merge.data.table)
importFrom(data.table,tstrsplit)
importFrom(downloader,download)
importFrom(grDevices,dev.off)
importFrom(grDevices,palette)
Expand Down Expand Up @@ -225,8 +211,6 @@ importFrom(utils,sessionInfo)
importFrom(utils,setTxtProgressBar)
importFrom(utils,txtProgressBar)
importFrom(utils,write.table)
importMethodsFrom(BiocGenerics,"annotation<-")
importMethodsFrom(BiocGenerics,annotation)
importMethodsFrom(CoreGx,"annotation<-")
importMethodsFrom(CoreGx,"curation<-")
importMethodsFrom(CoreGx,"datasetType<-")
Expand Down
124 changes: 0 additions & 124 deletions R/PharmacoSet-class.R
Original file line number Diff line number Diff line change
Expand Up @@ -341,130 +341,6 @@ checkPsetStructure <-
}
}

# #####
# # Checking cell
# #####
# if('tissueid' %in% colnames(sampleInfo(object))) {
# if('unique.tissueid' %in% colnames(curation(object)$tissue))
# {
# if(length(intersect(rownames(curation(object)$tissue),
# sampleNames(object)) != nrow(sampleInfo(object))) {
# message('rownames of curation tissue slot should be the same as cell
# slot (curated cell ids)')
# } else{
# if(length(intersect(sampleInfo(object)$tissueid,
# curation(object)$tissue$unique.tissueid)) !=
# length(table(sampleInfo(object)$tissueid))){
# message('tissueid should be the same as unique tissue id from tissue
# curation slot')
# }
# }
# } else {
# message('unique.tissueid which is curated tissue id across data set
# should be a column of tissue curation slot')
# }
# if(any(is.na(sampleInfo(object)[,'tissueid']) | sampleInfo(object)[,'tissueid']=='',
# na.rm=TRUE)){
# message(sprintf('There is no tissue type for this cell line(s): %s',
# paste(rownames(sampleInfo(object))[which(is.na(
# sampleInfo(object)[,'tissueid']) |
# sampleInfo(object)[,'tissueid']=='')], collapse=' ')))
# }
# } else {
# warning('tissueid does not exist in cell slot')
# }
#
# if('unique.sampleid' %in% colnames(curation(object)$cell)) {
# if(length(intersect(curation(object)$cell$unique.sampleid,
# sampleNames(object)) != nrow(sampleInfo(object))) {
# print('rownames of cell slot should be curated cell ids')
# }
# } else {
# print('unique.sampleid which is curated cell id across data set should be a
# column of cell curation slot')
# }
## if("sampleid" %in% colnames(sampleInfo(object))) {
## if(length(intersect(curation(object)$cell$sampleid, sampleNames(object))
## != nrow(sampleInfo(object))) {
## print('values of sampleid column should be curated cell line ids')
## }
## } else {
## print('sampleid which is curated cell id across data set should be a column of cell slot')
## }
#
# if(length(intersect(rownames(curation(object)$cell),
# sampleNames(object)) != nrow(sampleInfo(object))) {
# print('rownames of curation cell slot should be the same as cell slot
# (curated cell ids)')
# }
#
# if('unique.treatmentid' %in% colnames(curation(object)$treatment)) {
# if(length(intersect(curation(object)$treatment$unique.treatmentid,
# rownames(treatmentInfo(drug)))) != nrow(treatmentInfo(drug))) {
# print('rownames of drug slot should be curated drug ids')
# }
# } else {
# print('unique.treatmentid which is curated drug id across data set should be a
# column of drug curation slot')
# }
#
## if("treatmentid" %in% colnames(treatmentInfo(drug))) {
## if(length(intersect(curation(object)$treatment$treatmentid,
## rownames(treatmentInfo(drug)))) != nrow(treatmentInfo(drug))) {
## print('values of treatmentid column should be curated drug ids')
## }
## } else {
## print('treatmentid which is curated drug id across data set should be a
## column of drug slot')
## }
#
# if(length(intersect(rownames(curation(object)$cell),
# sampleNames(object)) != nrow(sampleInfo(object))) {
# print('rownames of curation drug slot should be the same as drug
# slot (curated drug ids)')
# }
#
# if(!is(sampleInfo(object), 'data.frame')) {
# warning('cell slot class type should be dataframe')
# }
# if(!is(treatmentInfo(drug), 'data.frame')) {
# warning('drug slot class type should be dataframe')
# }
# if(datasetType(object) %in% c('sensitivity', 'both'))
# {
# if(!is(sensitivityInfo(object), 'data.frame')) {
# warning('sensitivity info slot class type should be dataframe')
# }
# if("sampleid" %in% colnames(sensitivityInfo(object))) {
# if(!all(sensitivityInfo(object)[,"sampleid"] %in% sampleNames(object)){
# warning('not all the cell lines in sensitivity data are in cell slot')
# }
# }else {
# warning('sampleid does not exist in sensitivity info')
# }
# if("treatmentid" %in% colnames(sensitivityInfo(object))) {
# drug.ids <- unique(sensitivityInfo(object)[,"treatmentid"])
# drug.ids <- drug.ids[grep('///',drug.ids, invert=TRUE)]
# if(!all(drug.ids %in% rownames(treatmentInfo(drug)))) {
# print('not all the drugs in sensitivity data are in drug slot')
# }
# }else {
# warning('treatmentid does not exist in sensitivity info')
# }
#
# if(any(!is.na(sensitivityRaw(object)))) {
# if(!all(dimnames(sensitivityRaw(object))[[1]] %in%
# rownames(sensitivityInfo(object)))) {
# warning('For some experiments there is raw sensitivity data but no
# experiment information in sensitivity info')
# }
# }
# if(!all(rownames(sensitivityProfiles(object)) %in%
# rownames(sensitivityInfo(object)))) {
# warning('For some experiments there is sensitivity profiles but no
# experiment information in sensitivity info')
# }
# }
}


Expand Down
4 changes: 3 additions & 1 deletion R/computeSynergy.R
Original file line number Diff line number Diff line change
Expand Up @@ -1126,7 +1126,9 @@ setMethod("computeZIPdelta", signature(object = "TreatmentResponseExperiment"),
#' @examples
#' \dontrun{
#' ## ZIP is optional. Will be recomputed if not provided.
#' combo_profiles <- CoreGx::buildComboProfiles(tre, c("HS", "EC50", "E_inf", "ZIP", "combo_viability"))
#' combo_profiles <- CoreGx::buildComboProfiles(
#' tre,
#' c("HS", "EC50", "E_inf", "ZIP", "combo_viability"))
#' combo_profiles[,
#' .computeZIPdelta(
#' treatment1id = treatment1id,
Expand Down
56 changes: 34 additions & 22 deletions R/drugDoseResponseCurve.R
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
#'
#' # Generate a plot from one or more PSets
#' data(GDSCsmall)
#' drugDoseResponseCurve(drug="Doxorubicin", cellline="22RV", pSets=GDSCsmall)
#' drugDoseResponseCurve(drug="Doxorubicin", cellline="22RV1", pSets=GDSCsmall)
#' }
#'
#' @param drug `character(1)` A drug name for which the drug response curve should be
Expand Down Expand Up @@ -61,6 +61,8 @@
#' @param legend.loc And argument passable to xy.coords for the position to place the legend.
#' @param trunc `logical(1)` Should the viability values be truncated to lie in \[0-100\] before doing the fitting
#' @param verbose `logical(1)` Should warning messages about the data passed in be printed?
#' @param sample_col `character(1)` The name of the column in the profiles assay that contains the sample IDs.
#' @param treatment_col `character(1)` The name of the column in the profiles assay that contains the treatment IDs.
#'
#' @return Plots to the active graphics device and returns an invisible NULL.
#'
Expand Down Expand Up @@ -91,7 +93,9 @@ function(drug,
cex = 0.7,
cex.main = 0.9,
legend.loc = "topright",
verbose=TRUE) {
verbose=TRUE,
sample_col = "sampleid",
treatment_col = "treatmentid") {
if(!missing(pSets)){
if (!is(pSets, "list")) {
if (is(pSets, "PharmacoSet")) {
Expand Down Expand Up @@ -167,28 +171,42 @@ function(drug,
}
}

common.range.star <- FALSE

if (missing(plot.type)) {
plot.type <- "Actual"
}

if(is(treatmentResponse(pSets[[1]]), "LongTable")){
pSets[[1]] <- subsetByTreatment(pSets[[1]], treatments=drug)
}
pSets[[1]] <- subsetBySample(pSets[[1]], samples=cellline)

doses <- list(); responses <- list(); legend.values <- list(); j <- 0; pSetNames <- list()
if(!missing(pSets)){
for(i in seq_len(length(pSets))) {
exp_i <- which(sensitivityInfo(pSets[[i]])[ ,"sampleid"] == cellline & sensitivityInfo(pSets[[i]])[ ,"treatmentid"] == drug)
exp_i <- which(sensitivityInfo(pSets[[i]])[ ,sample_col] == cellline & sensitivityInfo(pSets[[i]])[ ,treatment_col] == drug)
if(length(exp_i) > 0) {
if (summarize.replicates) {
pSetNames[[i]] <- name(pSets[[i]])
if (length(exp_i) == 1) {
drug.responses <- as.data.frame(cbind("Dose"=as.numeric(as.vector(sensitivityRaw(pSets[[i]])[exp_i, , "Dose"])),
drug.responses <- as.data.frame(cbind("Dose"=as.numeric(as.vector(sensitivityRaw(pSets[[i]])[exp_i, , "Dose"])),
"Viability"=as.numeric(as.vector(sensitivityRaw(pSets[[i]])[exp_i, , "Viability"]))), stringsAsFactors=FALSE)
drug.responses <- drug.responses[complete.cases(drug.responses), ]
}else{
drug.responses <- as.data.frame(cbind("Dose"=apply(sensitivityRaw(pSets[[i]])[exp_i, , "Dose"], 2, function(x){median(as.numeric(x), na.rm=TRUE)}),
"Viability"=apply(sensitivityRaw(pSets[[i]])[exp_i, , "Viability"], 2, function(x){median(as.numeric(x), na.rm=TRUE)})), stringsAsFactors=FALSE)
drug.responses <- drug.responses[complete.cases(drug.responses), ]
}
drug.responses <- drug.responses[complete.cases(drug.responses), ]
# tryCatch(
# drug.responses <- as.data.frame(cbind("Dose"=as.numeric(as.vector(sensitivityRaw(pSets[[i]])[exp_i, , "Dose"])),
# "Viability"=as.numeric(as.vector(sensitivityRaw(pSets[[i]])[exp_i, , "Viability"]))), stringsAsFactors=FALSE)
# drug.responses <- drug.responses[complete.cases(drug.responses), ]
# , error = function(e) {
# if (length(exp_i) == 1) {
# drug.responses <- as.data.frame(cbind("Dose"=as.numeric(as.vector(sensitivityRaw(pSets[[i]])[exp_i, , "Dose"])),
# "Viability"=as.numeric(as.vector(sensitivityRaw(pSets[[i]])[exp_i, , "Viability"]))), stringsAsFactors=FALSE)
# drug.responses <- drug.responses[complete.cases(drug.responses), ]
# }else{
# drug.responses <- as.data.frame(cbind("Dose"=apply(sensitivityRaw(pSets[[i]])[exp_i, , "Dose"], 1, function(x){median(as.numeric(x), na.rm=TRUE)}),
# "Viability"=apply(sensitivityRaw(pSets[[i]])[exp_i, , "Viability"], 2, function(x){median(as.numeric(x), na.rm=TRUE)})), stringsAsFactors=FALSE)
# drug.responses <- drug.responses[complete.cases(drug.responses), ]
# }
# })


doses[[i]] <- drug.responses$Dose
responses[[i]] <- drug.responses$Viability
names(doses[[i]]) <- names(responses[[i]]) <- seq_len(length(doses[[i]]))
Expand All @@ -201,7 +219,7 @@ function(drug,
legend.values[[i]] <- sprintf("%s = %s", legends.label, round(as.numeric(sensitivityProfiles(pSets[[i]])[exp_i, legends.label]), digits=2))
}
} else {
legend.values[[i]] <- ""
legend.values[i] <- ""
}
}else {
for (exp in exp_i) {
Expand All @@ -224,7 +242,7 @@ function(drug,
}
} else {
tt <- unlist(strsplit(rownames(sensitivityInfo(pSets[[i]]))[exp], split="_"))
if (tt[1] == "treatmentid") {
if (tt[1] == treatment_col) {
legend.values[[j]] <- tt[2]
}else{
legend.values[[j]] <- rownames(sensitivityInfo(pSets[[i]]))[exp]
Expand Down Expand Up @@ -323,13 +341,7 @@ function(drug,
legends<- c(legends, sprintf("%s%s", pSetNames[[i]], legend.values[[i]]))
legends.col <- c(legends.col, mycol[i])
}
if (common.range.star) {
if (length(doses) > 1) {
for (i in seq_len(length(doses))) {
points(common.ranges[[i]], responses[[i]][names(common.ranges[[i]])], pch=8, col=mycol[i])
}
}
}

legend(legend.loc, legend=legends, col=legends.col, bty="n", cex=cex, pch=c(15,15))
return(invisible(NULL))
}
Expand Down
2 changes: 0 additions & 2 deletions R/methods-[.R
Original file line number Diff line number Diff line change
@@ -1,6 +1,4 @@
# ==== PharmacoSet Class


#'`[`
#'
#' @examples
Expand Down
Loading

0 comments on commit 3dab6c1

Please sign in to comment.