forked from elastic/elasticsearch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Revert "[DOCS] Moves analysis resources to PUT DFA API docs (elastic#…
- Loading branch information
1 parent
4e1107d
commit 71afeec
Showing
6 changed files
with
315 additions
and
238 deletions.
There are no files selected for viewing
217 changes: 217 additions & 0 deletions
217
docs/reference/ml/df-analytics/apis/analysisobjects.asciidoc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,217 @@ | ||
[role="xpack"] | ||
[testenv="platinum"] | ||
[[ml-dfa-analysis-objects]] | ||
=== Analysis configuration objects | ||
|
||
{dfanalytics-cap} resources contain `analysis` objects. For example, when you | ||
create a {dfanalytics-job}, you must define the type of analysis it performs. | ||
This page lists all the available parameters that you can use in the `analysis` | ||
object grouped by {dfanalytics} types. | ||
|
||
|
||
[discrete] | ||
[[oldetection-resources]] | ||
==== {oldetection-cap} configuration objects | ||
|
||
An `outlier_detection` configuration object has the following properties: | ||
|
||
`compute_feature_influence`:: | ||
(Optional, boolean) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=compute-feature-influence] | ||
|
||
`feature_influence_threshold`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-influence-threshold] | ||
|
||
`method`:: | ||
(Optional, string) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=method] | ||
|
||
`n_neighbors`:: | ||
(Optional, integer) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=n-neighbors] | ||
|
||
`outlier_fraction`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=outlier-fraction] | ||
|
||
`standardization_enabled`:: | ||
(Optional, boolean) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=standardization-enabled] | ||
|
||
|
||
[discrete] | ||
[[regression-resources]] | ||
==== {regression-cap} configuration objects | ||
|
||
[source,console] | ||
-------------------------------------------------- | ||
PUT _ml/data_frame/analytics/house_price_regression_analysis | ||
{ | ||
"source": { | ||
"index": "houses_sold_last_10_yrs" <1> | ||
}, | ||
"dest": { | ||
"index": "house_price_predictions" <2> | ||
}, | ||
"analysis": | ||
{ | ||
"regression": { <3> | ||
"dependent_variable": "price" <4> | ||
} | ||
} | ||
} | ||
-------------------------------------------------- | ||
// TEST[skip:TBD] | ||
|
||
<1> Training data is taken from source index `houses_sold_last_10_yrs`. | ||
<2> Analysis results will be output to destination index | ||
`house_price_predictions`. | ||
<3> The regression analysis configuration object. | ||
<4> Regression analysis will use field `price` to train on. As no other | ||
parameters have been specified it will train on 100% of eligible data, store its | ||
prediction in destination index field `price_prediction` and use in-built | ||
hyperparameter optimization to give minimum validation errors. | ||
|
||
|
||
[float] | ||
[[regression-resources-standard]] | ||
===== Standard parameters | ||
|
||
`dependent_variable`:: | ||
(Required, string) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable] | ||
+ | ||
-- | ||
The data type of the field must be numeric. | ||
-- | ||
|
||
`prediction_field_name`:: | ||
(Optional, string) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name] | ||
|
||
`training_percent`:: | ||
(Optional, integer) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent] | ||
|
||
`randomize_seed`:: | ||
(Optional, long) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed] | ||
|
||
|
||
[float] | ||
[[regression-resources-advanced]] | ||
===== Advanced parameters | ||
|
||
Advanced parameters are for fine-tuning {reganalysis}. They are set | ||
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>> | ||
to give minimum validation error. It is highly recommended to use the default | ||
values unless you fully understand the function of these parameters. If these | ||
parameters are not supplied, their values are automatically tuned to give | ||
minimum validation error. | ||
|
||
`eta`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=eta] | ||
|
||
`feature_bag_fraction`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction] | ||
|
||
`maximum_number_trees`:: | ||
(Optional, integer) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=maximum-number-trees] | ||
|
||
`gamma`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma] | ||
|
||
`lambda`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda] | ||
|
||
|
||
[discrete] | ||
[[classification-resources]] | ||
==== {classification-cap} configuration objects | ||
|
||
|
||
[float] | ||
[[classification-resources-standard]] | ||
===== Standard parameters | ||
|
||
`dependent_variable`:: | ||
(Required, string) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable] | ||
+ | ||
-- | ||
The data type of the field must be numeric (`integer`, `short`, `long`, `byte`), | ||
categorical (`ip`, `keyword`, `text`), or boolean. | ||
-- | ||
|
||
`num_top_classes`:: | ||
(Optional, integer) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-classes] | ||
|
||
`prediction_field_name`:: | ||
(Optional, string) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name] | ||
|
||
`training_percent`:: | ||
(Optional, integer) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent] | ||
|
||
`randomize_seed`:: | ||
(Optional, long) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed] | ||
|
||
|
||
[float] | ||
[[classification-resources-advanced]] | ||
===== Advanced parameters | ||
|
||
Advanced parameters are for fine-tuning {classanalysis}. They are set | ||
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>> | ||
to give minimum validation error. It is highly recommended to use the default | ||
values unless you fully understand the function of these parameters. If these | ||
parameters are not supplied, their values are automatically tuned to give | ||
minimum validation error. | ||
|
||
`eta`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=eta] | ||
|
||
`feature_bag_fraction`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction] | ||
|
||
`maximum_number_trees`:: | ||
(Optional, integer) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=maximum-number-trees] | ||
|
||
`gamma`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma] | ||
|
||
`lambda`:: | ||
(Optional, double) | ||
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda] | ||
|
||
[discrete] | ||
[[ml-hyperparam-optimization]] | ||
==== Hyperparameter optimization | ||
|
||
If you don't supply {regression} or {classification} parameters, hyperparameter | ||
optimization will be performed by default to set a value for the undefined | ||
parameters. The starting point is calculated for data dependent parameters by | ||
examining the loss on the training data. Subject to the size constraint, this | ||
operation provides an upper bound on the improvement in validation loss. | ||
|
||
A fixed number of rounds is used for optimization which depends on the number of | ||
parameters being optimized. The optimization starts with random search, then | ||
Bayesian optimization is performed that is targeting maximum expected | ||
improvement. If you override any parameters, then the optimization will | ||
calculate the value of the remaining parameters accordingly and use the value | ||
you provided for the overridden parameter. The number of rounds are reduced | ||
respectively. The validation error is estimated in each round by using 4-fold | ||
cross validation. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.