Skip to content
/ kinex Public

Kinex infers causal kinases from phosphoproteomics data

License

Notifications You must be signed in to change notification settings

bedapub/kinex

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Kinex - Kinome Exploration Tool

Kinex is a Python package for inferring causal kinases from phosphoproteomics data.

Paper: Kinex infers causal kinases from phosphoproteomics data. https://doi.org/10.1101/2023.11.23.568445

Main Features

  • Substrate Sequence Scoring
  • Causal Kinases Inference
  • Comparison with Drug Collection

Requirements

Installation

From Conda

# Create and activate your conda environment
conda create --name kinex
conda activate kinex

# Install kinex package
conda install -c bioconda kinex

From Source

# Create and activate a Python 3.11 conda environment 
conda create --name kinex
conda activate kinex
conda install python=3.11

# Download the package:
git clone [email protected]:bedapub/kinex.git
cd kinex

# Install the package
pip install .

Quick Start

1. Import Package and Create Kinex Object

from kinex import Kinex
import pandas as pd
Create Kinex Object
  1. With Predefined Matrices:

    kinex = Kinex()
  2. With Your Custom Matrices:

    kinex = Kinex(scoring_matrix_ser_thr=pd.read_csv('path_to_ser_thr_matrix.csv'), scoring_matrix_tyr=pd.read_csv('path_to_tyr_matrix.csv'))

Predefined matrices can be found here:

2. Score a Sequence

sequence = "FVKQKAY*QSPQKQ"
res = kinex.get_score(sequence)

3. Enrichment Analysis

enrich = kinex.get_enrichment(input_sites, fc_threshold=1.5, phospho_priming=False, favorability=True, method="max")

enrich.ser_thr.plot()
enrich.tyr.plot()

Documentation

You can find detailed documentation describing every feature of the package with examples and tutorials here.

About

Kinex infers causal kinases from phosphoproteomics data

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages