-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
221 lines (196 loc) · 7.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import pytorch_lightning as pl
from argparse import ArgumentParser
from pytorch_lightning import Trainer
import pytorch_lightning.callbacks as plc
import yaml
from model import MInterface
from data import DInterface
from data.utils import load_labels
from utils import str2bool, TBLogger
import sys
import numpy as np
import torch
import warnings
import shutil
warnings.filterwarnings("ignore")
import copy
def load_callbacks(args):
callbacks = []
"""
early stop callback
"""
# callbacks.append(plc.EarlyStopping(
# monitor='val-loss',
# mode='min',
# patience=10,
# min_delta=0.001
# ))
"""
checkpoint callback
"""
callbacks.append(plc.ModelCheckpoint(
dirpath=args.work_dir,
monitor='val-loss', # use valid set's acc
filename='best',
save_top_k=1,
mode='min',
save_last=True,
every_n_epochs = args.save_interval,
))
return callbacks
def get_trainer(args):
logger = TBLogger(save_dir = args.tb_folder,
name=args.work_dir_name,
default_hp_metric=False)
args.callbacks = load_callbacks(args)
args.logger =logger
return Trainer(
devices=args.gpus if args.gpus > 0 else None,
accelerator = 'gpu' if args.gpus > 0 else 'cpu',
strategy = 'ddp_find_unused_parameters_true',
callbacks = args.callbacks,
logger = logger,
max_epochs = args.num_epoch,
check_val_every_n_epoch = args.eval_interval,
num_sanity_val_steps=0,
)
def main(args):
hparams = copy.deepcopy(args)
"""
pre-process arguments
"""
hparams.tb_folder = '/'.join((hparams.work_dir).split('/')[:-1]) + '/tensorboard'
hparams.work_dir_name = (hparams.work_dir).split('/')[-1]
print("Current Experiment Configs: {}".format(hparams))
"""
init environment
"""
if hparams.activate_train: # start a new training
if hparams.resume: # resume if work_dir exists, otherwise create
if not os.path.exists(hparams.work_dir):
print("Create working dir {}".format(hparams.work_dir))
os.mkdir(hparams.work_dir)
hparams.resume = False
else:
# check checkpoint file
if not os.path.exists('{}/best.ckpt'.format(hparams.work_dir)):
hparams.resume = False
else: # if work_dir exists, create new; otherwise directly create
if os.path.exists(hparams.work_dir):
shutil.rmtree(hparams.work_dir)
print("Create working dir {}".format(hparams.work_dir))
os.mkdir(hparams.work_dir)
# constant seed
pl.seed_everything(hparams.seed)
"""
Pre-known dataset configs
"""
hparams.num_class, hparams.emb_dim, hparams.unseen_inds, \
hparams.seen_inds, hparams.cls_labels \
= load_labels(hparams.root, hparams.split, hparams.dataloader, hparams.model_name)
hparams.seen_labels = [hparams.cls_labels[i] for i in hparams.seen_inds]
hparams.unseen_labels = [hparams.cls_labels[i] for i in hparams.unseen_inds]
hparams.bp_num = 4
hparams.t_num = 3
"""
data module
"""
print("Load data module.")
print(hparams.backbone)
data_module = DInterface(**vars(hparams))
data_module.setup()
"""
model module
"""
print("Load model module.")
model = MInterface(**vars(hparams))
"""
Processor
"""
trainer = get_trainer(hparams)
# zsl training
if hparams.activate_train:
trainer.fit(model, data_module.seen_train_dataloader(),
data_module.seen_val_dataloader(),
ckpt_path = '{}/best.ckpt'.format(hparams.work_dir)
if hparams.resume else None)
# unseen test - pure zsl
model.zsl()
trainer.test(model, data_module.zsl_test_dataloader(),
ckpt_path = '{}/best.ckpt'.format(hparams.work_dir))
for i in model.test_acc:
acc = np.sum(np.array(model.test_acc[i][0]))
acclen = np.sum(np.array(model.test_acc[i][1]))
model.test_acc[i] = acc / acclen
print(model.test_acc)
if __name__ == '__main__':
parser = ArgumentParser()
"""
Basic arguments
"""
parser.add_argument('-w', '--work_dir', default='./work_dir/tmp', help='the work folder for storing results')
parser.add_argument('-c', '--config', default=None, help='path to the configuration file')
"""
Processor
"""
parser.add_argument('--gpus', type=str2bool, default=-1, help='use GPUs or not')
parser.add_argument('--num_epoch', type=int, help='stop training in which epoch')
"""
Visulize and debug
"""
parser.add_argument('--seed', type=int, default=1234, help='random seed')
parser.add_argument('--save_interval', type=int, default=1, help='the interval for storing models (#iteration)')
parser.add_argument('--eval_interval', type=int, default=1, help='the interval for evaluating models (#iteration)')
"""
Data
"""
parser.add_argument('--root', help='root repo to load data')
parser.add_argument('--root2', help='feature data path')
parser.add_argument('--dataset', help='type of dataset: shift_5_r')
parser.add_argument('--dataloader', help='class of the dataloader: ntu60')
parser.add_argument('--data_type', help='how to process the input skeleton data')
parser.add_argument('--batch_size', type=int, default=256, help='training batch size')
parser.add_argument('-ss', '--split', type=int, help='Which split to use: 5 or 12')
parser.add_argument('-b', '--backbone', default='shift', help='encoder backbone')
"""
Model
"""
# configs
parser.add_argument('--model_name', help='select the training config for a specific model')
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--model_args', default=dict(), help='model configs')
"""
Ablation
"""
parser.add_argument('--activate_train', type=str2bool, default=False, help='activate training process')
parser.add_argument('--test_p', default=False, type=str2bool, help='activate hyperparameter testing')
parser.add_argument('--resume', default=False, type=str2bool, help='resume training')
parser.add_argument('--accumulate_grad_batches', default=0, help='accumulate grad batches')
"""
Main process
"""
# Reset Some Default Trainer Arguments' Default Values
p = parser.parse_args(sys.argv[1:])
if p.config is not None:
# load config file
with open(p.config, 'r') as f:
input_args = yaml.load(f, Loader=yaml.FullLoader)
# update parser from config file
key = vars(p).keys()
for k in input_args.keys():
if k not in key:
print('Unknown Arguments: {}'.format(k))
assert k in key
parser.set_defaults(**input_args) # assign arg values
args = parser.parse_args() # update args with hand input
if not args.test_p:
"""
run
"""
main(args)
else:
"""
do parameter tests
"""
pass