by Jiahao Huang ([email protected])
This is the official implementation of our proposed SDAUT:
Swin Deformable Attention U-Net Transformer (SDAUT) for Explainable Fast MRI
Please cite:
@ARTICLE{2022arXiv220702390H,
author = {{Huang}, Jiahao and {Xing}, Xiaodan and {Gao}, Zhifan and {Yang}, Guang},
title = "{Swin Deformable Attention U-Net Transformer (SDAUT) for Explainable Fast MRI}",
journal = {arXiv e-prints},
keywords = {Computer Science - Computer Vision and Pattern Recognition, Computer Science - Machine Learning, Electrical Engineering and Systems Science - Image and Video Processing},
year = 2022,
month = jul,
eid = {arXiv:2207.02390},
pages = {arXiv:2207.02390},
archivePrefix = {arXiv},
eprint = {2207.02390},
primaryClass = {cs.CV},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220702390H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
The structure of SDAUT:
Our proposed swin deformable self-attention:
matplotlib==3.3.4
opencv-python==4.5.3.56
Pillow==8.3.2
pytorch-fid==0.2.0
scikit-image==0.17.2
scipy==1.5.4
tensorboardX==2.4
timm==0.4.12
torch==1.9.0
torchvision==0.10.0
Use different options (json files) to train different networks.
To train SDAUT on CC:
python main_train_sdaut.py --opt ./options/SDAUT/example/train_sdaut_CCsagnpi_G1D30_kkddkk_offset_ps2_res256.json
To test SDAUT on CC:
python main_test_sdaut_CC.py --opt ./options/SDAUT/example/test/test_sdaut_CCsagnpi_G1D30_kkddkk_offset_ps2_res256.json
This repository is based on:
Swin Transformer for Fast MRI (code and paper);
SwinIR: Image Restoration Using Swin Transformer (code and paper);
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (code and paper).
Vision Transformer with Deformable Attention (code and [paper](h