Skip to content

Commit

Permalink
Sagemaker DataWrangler Samples addition (#3510)
Browse files Browse the repository at this point in the history
* Create readme.md

* Add files via upload

Joined flow added

* Add files via upload

* Add files via upload

* Add files via upload

* Delete TS-Workshop-Advanced.ipynb

* Delete TS-Workshop-Cleanup.ipynb

* Delete TS-Workshop.ipynb

* Add files via upload

Updated after the CI errors

* Create test.txt

* Add files via upload

* Delete sagemaker-datawrangler/timeseries-dataflow/pictures directory

* Delete timeseries.flow

* Add files via upload

* Add files via upload

* Add files via upload

* Update index.rst

* Add files via upload

Added rst file for joined

* Add files via upload

added tabular index.rst file

* Add files via upload

Uploaded index.rst for time series data

* Delete sagemaker-datawrangler/tabular-dataflow/img directory

Images are now in S3 bucket so deleting this

* Update README.md

updating image links with s3 links

* Update and rename sagemaker-datawrangler/tabular-dataflow/Data-Exploration.md to sagemaker-datawrangler/tabular-dataflow/data-exploration/Data-Exploration.md

updating image link and folder

* Add files via upload

uploading index.rst

* Update and rename sagemaker-datawrangler/tabular-dataflow/Data-Import.md to sagemaker-datawrangler/tabular-dataflow/data-import/Data-Import.md

updated image links

* Add files via upload

index.rst for data import

* Update Data-Transformations.md

* Rename sagemaker-datawrangler/tabular-dataflow/Data-Transformations.md to sagemaker-datawrangler/tabular-dataflow/data-transformations/Data-Transformations.md

* Add files via upload

* Update readme.md

* Delete sagemaker-datawrangler/joined-dataflow/img directory

* Update readme.md

* Delete sagemaker-datawrangler/timeseries-dataflow/img directory

* Update index.rst

* Update index.rst

Updated index.rst to link to other files

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update README.md

referring to /readme.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Add files via upload

* Add files via upload

* Update index.rst

* Create index.rst

* Update index.rst

* Update index.rst

* Add files via upload

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Delete sagemaker-datawrangler/import-flow directory

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

* Update index.rst

added data wrangler to the prep section

* Update index.rst

* Update index.rst

* Add files via upload

Updated per comments from aqyt

* Update explore_data.ipynb

Updated per Amelia comment - present tense

* Update index.rst

Grammer

* Update index.rst

Grammer

* Update index.rst

* Update import-flow.md

Co-authored-by: atqy <[email protected]>
Co-authored-by: Aaron Markham <[email protected]>
  • Loading branch information
3 people authored Sep 21, 2022
1 parent c11efc9 commit ffef369
Show file tree
Hide file tree
Showing 22 changed files with 248,274 additions and 1 deletion.
9 changes: 8 additions & 1 deletion index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@ We recommend the following notebooks as a broad introduction to the capabilities
:maxdepth: 1
:caption: Prepare data

sagemaker-datawrangler/index
sagemaker_processing/spark_distributed_data_processing/sagemaker-spark-processing_outputs
sagemaker_processing/basic_sagemaker_data_processing/basic_sagemaker_processing_outputs

Expand Down Expand Up @@ -210,10 +211,16 @@ More examples
sagemaker-clarify/index
scientific_details_of_algorithms/index
aws_marketplace/index



.. toctree::
:maxdepth: 1
:caption: Community examples

contrib/index
contrib/index





41 changes: 41 additions & 0 deletions sagemaker-datawrangler/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
![Amazon SageMaker Data Wrangler](https://github.com/aws/amazon-sagemaker-examples/raw/main/_static/sagemaker-banner.png)

# Amazon SageMaker Data Wrangler Examples

Example flows that demonstrate how to aggregate and prepare data for Machine Learning using Amazon SageMaker Data Wrangler.

## :books: Background

[Amazon SageMaker Data Wrangler](https://aws.amazon.com/sagemaker/data-wrangler/) reduces the time it takes to aggregate and prepare data for ML. From a single interface in SageMaker Studio, you can import data from Amazon S3, Amazon Athena, Amazon Redshift, AWS Lake Formation, and Amazon SageMaker Feature Store, and in just a few clicks SageMaker Data Wrangler will automatically load, aggregate, and display the raw data. It will then make conversion recommendations based on the source data, transform the data into new features, validate the features, and provide visualizations with recommendations on how to remove common sources of error such as incorrect labels. Once your data is prepared, you can build fully automated ML workflows with Amazon SageMaker Pipelines or import that data into Amazon SageMaker Feature Store.



The [SageMaker example notebooks](https://sagemaker-examples.readthedocs.io/en/latest/) are Jupyter notebooks that demonstrate the usage of Amazon SageMaker.

## :hammer_and_wrench: Setup

Amazon SageMaker Data Wrangler is a feature in Amazon SageMaker Studio. Use this section to learn how to access and get started using Data Wrangler. Do the following:

* Complete each step in [Prerequisites](https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-getting-started.html#data-wrangler-getting-started-prerequisite).

* Follow the procedure in [Access Data Wrangler](https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-getting-started.html#data-wrangler-getting-started-access) to start using Data Wrangler.




## :notebook: Examples

### **[Tabular DataFlow](tabular-dataflow/README.md)**

This example provide quick walkthrough of how to aggregate and prepare data for Machine Learning using Amazon SageMaker Data Wrangler for Tabular dataset.

### **[Timeseries DataFlow](timeseries-dataflow/readme.md)**

This example provide quick walkthrough of how to aggregate and prepare data for Machine Learning using Amazon SageMaker Data Wrangler for Timeseries dataset.

### **[Joined DataFlow](joined-dataflow/readme.md)**

This example provide quick walkthrough of how to aggregate and prepare data for Machine Learning using Amazon SageMaker Data Wrangler for Joined dataset.



11 changes: 11 additions & 0 deletions sagemaker-datawrangler/import-flow.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
## Import Flow

Each of the example has a flow file available which you can directly import to expedite the process or validate the flow.

Here are the steps to import the flow

* Download the flow file

* In Sagemaker Studio, drag and drop the flow file or use the upload button to browse the flow and upload

![uploadflow](/uploadflow.png)
69 changes: 69 additions & 0 deletions sagemaker-datawrangler/index.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@


Amazon SageMaker Data Wrangler
=======================================

These example flows demonstrates how to aggregate and prepare data for
Machine Learning using Amazon SageMaker Data Wrangler.


------------------

`Amazon SageMaker Data
Wrangler <https://aws.amazon.com/sagemaker/data-wrangler/>`__ reduces
the time it takes to aggregate and prepare data for ML. From a single
interface in SageMaker Studio, you can import data from Amazon S3,
Amazon Athena, Amazon Redshift, AWS Lake Formation, and Amazon SageMaker
Feature Store, and in just a few clicks SageMaker Data Wrangler will
automatically load, aggregate, and display the raw data. It will then
make conversion recommendations based on the source data, transform the
data into new features, validate the features, and provide
visualizations with recommendations on how to remove common sources of
error such as incorrect labels. Once your data is prepared, you can
build fully automated ML workflows with Amazon SageMaker Pipelines or
import that data into Amazon SageMaker Feature Store.

The `SageMaker example
notebooks <https://sagemaker-examples.readthedocs.io/en/latest/>`__ are
Jupyter notebooks that demonstrate the usage of Amazon SageMaker.

Setup
-------------------------

Amazon SageMaker Data Wrangler is a feature in Amazon SageMaker Studio.
Use this section to learn how to access and get started using Data
Wrangler. Do the following:

- Complete each step in
`Prerequisites <https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-getting-started.html#data-wrangler-getting-started-prerequisite>`__.

- Follow the procedure in `Access Data
Wrangler <https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-getting-started.html#data-wrangler-getting-started-access>`__
to start using Data Wrangler.

Examples
-------------------

Tabular Dataflow
---------------------------

.. toctree::
:maxdepth: 1

tabular-dataflow/index

Timeseries Dataflow
----------------------------

.. toctree::
:maxdepth: 1

timeseries-dataflow/index

Joined Dataflow
----------------------------

.. toctree::
:maxdepth: 1

joined-dataflow/index
Loading

0 comments on commit ffef369

Please sign in to comment.