-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding new CV notebook for distributed training with PT 1.11
- Loading branch information
Showing
9 changed files
with
1,405 additions
and
0 deletions.
There are no files selected for viewing
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
1 change: 1 addition & 0 deletions
1
.../huggingface/pytorch_multiple_gpu_single_node/vision_transformer/scripts/requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
accelerate |
390 changes: 390 additions & 0 deletions
390
...mpiler/huggingface/pytorch_multiple_gpu_single_node/vision_transformer/scripts/run_mae.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,390 @@ | ||
#!/usr/bin/env python | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | ||
# Modifications Copyright 2022 Amazon.com, Inc. or its affiliates. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
|
||
import logging | ||
import os | ||
import sys | ||
from dataclasses import dataclass, field | ||
from typing import Optional | ||
|
||
import torch | ||
from datasets import load_dataset | ||
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor | ||
from torchvision.transforms.functional import InterpolationMode | ||
|
||
import transformers | ||
from transformers import ( | ||
HfArgumentParser, | ||
Trainer, | ||
TrainingArguments, | ||
ViTFeatureExtractor, | ||
ViTMAEConfig, | ||
ViTMAEForPreTraining, | ||
) | ||
from transformers.trainer_utils import get_last_checkpoint | ||
from transformers.utils import check_min_version, send_example_telemetry | ||
from transformers.utils.versions import require_version | ||
|
||
|
||
""" Pre-training a 🤗 ViT model as an MAE (masked autoencoder), as proposed in https://arxiv.org/abs/2111.06377.""" | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | ||
check_min_version("4.21.0") | ||
|
||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") | ||
|
||
|
||
@dataclass | ||
class DataTrainingArguments: | ||
""" | ||
Arguments pertaining to what data we are going to input our model for training and eval. | ||
Using `HfArgumentParser` we can turn this class | ||
into argparse arguments to be able to specify them on | ||
the command line. | ||
""" | ||
|
||
dataset_name: Optional[str] = field( | ||
default="cifar10", metadata={"help": "Name of a dataset from the datasets package"} | ||
) | ||
dataset_config_name: Optional[str] = field( | ||
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | ||
) | ||
image_column_name: Optional[str] = field( | ||
default=None, metadata={"help": "The column name of the images in the files."} | ||
) | ||
train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."}) | ||
validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."}) | ||
train_val_split: Optional[float] = field( | ||
default=0.15, metadata={"help": "Percent to split off of train for validation."} | ||
) | ||
max_train_samples: Optional[int] = field( | ||
default=None, | ||
metadata={ | ||
"help": ( | ||
"For debugging purposes or quicker training, truncate the number of training examples to this " | ||
"value if set." | ||
) | ||
}, | ||
) | ||
max_eval_samples: Optional[int] = field( | ||
default=None, | ||
metadata={ | ||
"help": ( | ||
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | ||
"value if set." | ||
) | ||
}, | ||
) | ||
|
||
def __post_init__(self): | ||
data_files = dict() | ||
if self.train_dir is not None: | ||
data_files["train"] = self.train_dir | ||
if self.validation_dir is not None: | ||
data_files["val"] = self.validation_dir | ||
self.data_files = data_files if data_files else None | ||
|
||
|
||
@dataclass | ||
class ModelArguments: | ||
""" | ||
Arguments pertaining to which model/config/feature extractor we are going to pre-train. | ||
""" | ||
|
||
model_name_or_path: str = field( | ||
default=None, | ||
metadata={ | ||
"help": ( | ||
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." | ||
) | ||
}, | ||
) | ||
config_name: Optional[str] = field( | ||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} | ||
) | ||
config_overrides: Optional[str] = field( | ||
default=None, | ||
metadata={ | ||
"help": ( | ||
"Override some existing default config settings when a model is trained from scratch. Example: " | ||
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" | ||
) | ||
}, | ||
) | ||
cache_dir: Optional[str] = field( | ||
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | ||
) | ||
model_revision: str = field( | ||
default="main", | ||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | ||
) | ||
feature_extractor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) | ||
use_auth_token: bool = field( | ||
default=False, | ||
metadata={ | ||
"help": ( | ||
"Will use the token generated when running `transformers-cli login` (necessary to use this script " | ||
"with private models)." | ||
) | ||
}, | ||
) | ||
mask_ratio: float = field( | ||
default=0.75, metadata={"help": "The ratio of the number of masked tokens in the input sequence."} | ||
) | ||
norm_pix_loss: bool = field( | ||
default=True, metadata={"help": "Whether or not to train with normalized pixel values as target."} | ||
) | ||
|
||
|
||
@dataclass | ||
class CustomTrainingArguments(TrainingArguments): | ||
base_learning_rate: float = field( | ||
default=1e-3, metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} | ||
) | ||
|
||
|
||
def collate_fn(examples): | ||
pixel_values = torch.stack([example["pixel_values"] for example in examples]) | ||
return {"pixel_values": pixel_values} | ||
|
||
|
||
def main(): | ||
# See all possible arguments in src/transformers/training_args.py | ||
# or by passing the --help flag to this script. | ||
# We now keep distinct sets of args, for a cleaner separation of concerns. | ||
|
||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments)) | ||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | ||
# If we pass only one argument to the script and it's the path to a json file, | ||
# let's parse it to get our arguments. | ||
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | ||
else: | ||
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | ||
|
||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | ||
# information sent is the one passed as arguments along with your Python/PyTorch versions. | ||
send_example_telemetry("run_mae", model_args, data_args) | ||
|
||
# Setup logging | ||
logging.basicConfig( | ||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | ||
datefmt="%m/%d/%Y %H:%M:%S", | ||
handlers=[logging.StreamHandler(sys.stdout)], | ||
) | ||
|
||
log_level = training_args.get_process_log_level() | ||
logger.setLevel(log_level) | ||
transformers.utils.logging.set_verbosity(log_level) | ||
transformers.utils.logging.enable_default_handler() | ||
transformers.utils.logging.enable_explicit_format() | ||
|
||
# Log on each process the small summary: | ||
logger.warning( | ||
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | ||
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | ||
) | ||
logger.info(f"Training/evaluation parameters {training_args}") | ||
|
||
# Detecting last checkpoint. | ||
last_checkpoint = None | ||
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | ||
last_checkpoint = get_last_checkpoint(training_args.output_dir) | ||
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | ||
raise ValueError( | ||
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | ||
"Use --overwrite_output_dir to overcome." | ||
) | ||
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | ||
logger.info( | ||
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | ||
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | ||
) | ||
|
||
# Initialize our dataset. | ||
ds = load_dataset( | ||
data_args.dataset_name, | ||
data_args.dataset_config_name, | ||
data_files=data_args.data_files, | ||
cache_dir=model_args.cache_dir, | ||
use_auth_token=True if model_args.use_auth_token else None, | ||
) | ||
|
||
# If we don't have a validation split, split off a percentage of train as validation. | ||
data_args.train_val_split = None if "validation" in ds.keys() else data_args.train_val_split | ||
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: | ||
split = ds["train"].train_test_split(data_args.train_val_split) | ||
ds["train"] = split["train"] | ||
ds["validation"] = split["test"] | ||
|
||
# Load pretrained model and feature extractor | ||
# | ||
# Distributed training: | ||
# The .from_pretrained methods guarantee that only one local process can concurrently | ||
# download model & vocab. | ||
config_kwargs = { | ||
"cache_dir": model_args.cache_dir, | ||
"revision": model_args.model_revision, | ||
"use_auth_token": True if model_args.use_auth_token else None, | ||
} | ||
if model_args.config_name: | ||
config = ViTMAEConfig.from_pretrained(model_args.config_name, **config_kwargs) | ||
elif model_args.model_name_or_path: | ||
config = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) | ||
else: | ||
config = ViTMAEConfig() | ||
logger.warning("You are instantiating a new config instance from scratch.") | ||
if model_args.config_overrides is not None: | ||
logger.info(f"Overriding config: {model_args.config_overrides}") | ||
config.update_from_string(model_args.config_overrides) | ||
logger.info(f"New config: {config}") | ||
|
||
# adapt config | ||
config.update( | ||
{ | ||
"mask_ratio": model_args.mask_ratio, | ||
"norm_pix_loss": model_args.norm_pix_loss, | ||
} | ||
) | ||
|
||
# create feature extractor | ||
if model_args.feature_extractor_name: | ||
feature_extractor = ViTFeatureExtractor.from_pretrained(model_args.feature_extractor_name, **config_kwargs) | ||
elif model_args.model_name_or_path: | ||
feature_extractor = ViTFeatureExtractor.from_pretrained(model_args.model_name_or_path, **config_kwargs) | ||
else: | ||
feature_extractor = ViTFeatureExtractor() | ||
|
||
# create model | ||
if model_args.model_name_or_path: | ||
model = ViTMAEForPreTraining.from_pretrained( | ||
model_args.model_name_or_path, | ||
from_tf=bool(".ckpt" in model_args.model_name_or_path), | ||
config=config, | ||
cache_dir=model_args.cache_dir, | ||
revision=model_args.model_revision, | ||
use_auth_token=True if model_args.use_auth_token else None, | ||
) | ||
else: | ||
logger.info("Training new model from scratch") | ||
model = ViTMAEForPreTraining(config) | ||
|
||
if training_args.do_train: | ||
column_names = ds["train"].column_names | ||
else: | ||
column_names = ds["validation"].column_names | ||
|
||
if data_args.image_column_name is not None: | ||
image_column_name = data_args.image_column_name | ||
elif "image" in column_names: | ||
image_column_name = "image" | ||
elif "img" in column_names: | ||
image_column_name = "img" | ||
else: | ||
image_column_name = column_names[0] | ||
|
||
# transformations as done in original MAE paper | ||
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py | ||
transforms = Compose( | ||
[ | ||
Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), | ||
RandomResizedCrop(feature_extractor.size, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC), | ||
RandomHorizontalFlip(), | ||
ToTensor(), | ||
Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), | ||
] | ||
) | ||
|
||
def preprocess_images(examples): | ||
"""Preprocess a batch of images by applying transforms.""" | ||
|
||
examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]] | ||
return examples | ||
|
||
if training_args.do_train: | ||
if "train" not in ds: | ||
raise ValueError("--do_train requires a train dataset") | ||
if data_args.max_train_samples is not None: | ||
ds["train"] = ds["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) | ||
# Set the training transforms | ||
ds["train"].set_transform(preprocess_images) | ||
|
||
if training_args.do_eval: | ||
if "validation" not in ds: | ||
raise ValueError("--do_eval requires a validation dataset") | ||
if data_args.max_eval_samples is not None: | ||
ds["validation"] = ( | ||
ds["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) | ||
) | ||
# Set the validation transforms | ||
ds["validation"].set_transform(preprocess_images) | ||
|
||
# Compute absolute learning rate | ||
total_train_batch_size = ( | ||
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size | ||
) | ||
if training_args.base_learning_rate is not None: | ||
training_args.learning_rate = training_args.base_learning_rate * total_train_batch_size / 256 | ||
|
||
# Initialize our trainer | ||
trainer = Trainer( | ||
model=model, | ||
args=training_args, | ||
train_dataset=ds["train"] if training_args.do_train else None, | ||
eval_dataset=ds["validation"] if training_args.do_eval else None, | ||
tokenizer=feature_extractor, | ||
data_collator=collate_fn, | ||
) | ||
|
||
# Training | ||
if training_args.do_train: | ||
checkpoint = None | ||
if training_args.resume_from_checkpoint is not None: | ||
checkpoint = training_args.resume_from_checkpoint | ||
elif last_checkpoint is not None: | ||
checkpoint = last_checkpoint | ||
train_result = trainer.train(resume_from_checkpoint=checkpoint) | ||
trainer.save_model() | ||
trainer.log_metrics("train", train_result.metrics) | ||
trainer.save_metrics("train", train_result.metrics) | ||
trainer.save_state() | ||
|
||
# Evaluation | ||
if training_args.do_eval: | ||
metrics = trainer.evaluate() | ||
trainer.log_metrics("eval", metrics) | ||
trainer.save_metrics("eval", metrics) | ||
|
||
# Write model card and (optionally) push to hub | ||
kwargs = { | ||
"tasks": "masked-auto-encoding", | ||
"dataset": data_args.dataset_name, | ||
"tags": ["masked-auto-encoding"], | ||
} | ||
if training_args.push_to_hub: | ||
trainer.push_to_hub(**kwargs) | ||
else: | ||
trainer.create_model_card(**kwargs) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() | ||
|
||
|
||
def _mp_fn(index): | ||
# For xla_spawn (TPUs) | ||
main() |
Oops, something went wrong.