Skip to content

Commit

Permalink
update parameters and fix grammar for roberta-base and bert-base-case…
Browse files Browse the repository at this point in the history
…d notebook
  • Loading branch information
Bruce Zhang committed Sep 14, 2022
1 parent 952b68e commit 1b3e9ca
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 37 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@
"source": [
"## Introduction\n",
"\n",
"This notebooks is an end-to-end binary text classification example. In this demo, we use the Hugging Face's `transformers` and `datasets` libraries with SageMaker Training Compiler to compile and fine-tune a pre-trained transformer for binary text classification. In particular, the pre-trained model will be fine-tuned using the Stanford Sentiment Treebank (SST) dataset. To get started, you need to set up the environment with a few prerequisite steps, for permissions, configurations, and so on. \n",
"This notebook is an end-to-end binary text classification example. In this demo, we use the Hugging Face's `transformers` and `datasets` libraries with SageMaker Training Compiler to compile and fine-tune a pre-trained transformer for binary text classification. In particular, the pre-trained model will be fine-tuned using the `Stanford Sentiment Treebank (SST)` dataset. To get started, you need to set up the environment with a few prerequisite steps, for permissions, configurations, and so on. \n",
"\n",
"![image.png](attachment:image.png)\n",
"\n",
Expand Down Expand Up @@ -81,7 +81,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install \"sagemaker>=2.108.0\" botocore boto3 awscli s3fs typing-extensions --upgrade"
"!pip install \"sagemaker>=2.108.0\" botocore boto3 awscli s3fs typing-extensions \"torch==1.11.0\" --upgrade"
]
},
{
Expand Down Expand Up @@ -112,7 +112,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Copy and run the following code if you need to upgrade ipywidgets for `datasets` library and restart kernel. This is only needed when preprocessing is done in the notebook.\n",
"Copy and run the following code if you need to upgrade \"ipywidgets\" for `datasets` library and restart kernel. This is only needed when preprocessing is done in the notebook.\n",
"\n",
"```python\n",
"%%capture\n",
Expand All @@ -134,7 +134,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note:** If you are going to use Sagemaker in a local environment. You need access to an IAM Role with the required permissions for SageMaker. To learn more, see [SageMaker Roles](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html)."
"**Note:** If you are going to use SageMaker in a local environment. You need access to an IAM Role with the required permissions for SageMaker. To learn more, see [SageMaker Roles](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html)."
]
},
{
Expand Down Expand Up @@ -176,7 +176,7 @@
"\n",
"If you'd like to try other training datasets later, you can simply use this method.\n",
"\n",
"For this example notebook, we prepared the [SST2 dataset](https://www.tensorflow.org/datasets/catalog/glue#gluesst2) in the public SageMaker sample S3 bucket. The following code cells show how you can directly load the dataset and convert to a HuggingFace DatasetDict."
"For this example notebook, we prepared the [SST2 dataset](https://www.tensorflow.org/datasets/catalog/glue#gluesst2) in the public SageMaker sample S3 bucket. The following code cells show how you can directly load the dataset and convert to a `HuggingFace DatasetDict`."
]
},
{
Expand Down Expand Up @@ -406,7 +406,7 @@
"source": [
"from sagemaker.pytorch import PyTorch\n",
"\n",
"hyperparameters = {\"epochs\": 5, \"train_batch_size\": 14, \"model_name\": \"bert-base-cased\"}\n",
"hyperparameters = {\"epochs\": 5, \"train_batch_size\": 16, \"model_name\": \"bert-base-cased\"}\n",
"\n",
"# Scale the learning rate by batch size, as original LR was using batch size of 32\n",
"hyperparameters[\"learning_rate\"] = float(\"5e-5\") / 32 * hyperparameters[\"train_batch_size\"]\n",
Expand Down Expand Up @@ -712,7 +712,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot and compare throughputs of compiled training and native training"
"### Plot and compare throughput of compiled training and native training"
]
},
{
Expand Down Expand Up @@ -765,7 +765,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Example output for SageMaker Training Compiler traing job\n",
"#### Example output for SageMaker Training Compiler training job\n",
"\n",
"{'train_runtime': 3742.9028,\n",
" 'train_samples_per_second': 89.969,\n",
Expand Down Expand Up @@ -801,27 +801,6 @@
"plt.xticks(ticks=[1, 1.5], labels=[\"Baseline PT\", \"SM-Training-Compiler-enhanced PT\"])"
]
},
{
"attachments": {
"throughput.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAElCAYAAAD+wXUWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de7xd853/8ddbQiOCiITGJaJiqrQoKUGrTFNKFTNl6FBpS7VTner82qpWR3Xqml4U0ypliLq2qbp1Ki6Dxl1CSAilLhFS4hLi0gr5/P74fresbN9zzt4nZ5+dnLyfj8d5nLXX+q61PmvfPvu7Lp+liMDMzKzeCu0OwMzMlk5OEGZmVuQEYWZmRU4QZmZW5ARhZmZFThBmZlbkBGFLHUn9JL0iaURPtu1JkkZJWirOEZfUX1JIGtnuWKxvcYKwJZa/oGt/CyW9Xnl8QLPLi4i3ImJQRMzqybbNkHRWZRvekLSg8vjKnlzX0mxpSoTW++QL5awnSXocOCQiruukTf+IeLP3oloyko4F1ouIz1XGjQIejgg1uIyWbbOk/sACYMOIeLyHl93Udlrf4h6EtZykYyVdIukiSfOBAyVtJ+l2SfMkzZF0qqQVc/vFdplIOj9P/6Ok+ZJuk7Rhs23z9N0k/VnSS5JOk3SLpM8twbYdJGm2pLmSjuximwfk2OZIekrSTyWtlNsfIunGyvz12zVM0h8kvSzpTknHV9tnu0p6RNKLkk6tLOsQSX+S9Iu83TMl7VyZPlvSTnWxn5sf/imPq/WePtTd58qWPU4Q1lv+CbgQWB24BHgTOBwYCuwAfAL4Uifz/yvwn8AQYBbww2bbSloL+A3wrbzex4BturtB2fbAKGBX4AeSNq5Mq9/mo4HRwObAB0nb/Z0G13M6MA9YG/gCMK7QZndg67zsAyWNrYvzQdJ2/xD4vaTBDax3R4C8G29QRNzVYLzWBzhBWG+5OSKujIiFEfF6RNwVEXdExJsR8ShwJvDRTuafGBFTImIBcAGwZTfa7gFMi4jL87STgeeWcLuOiYi/RcTdwP3AFpVpi20zcEBuPzcingX+C/hsVyvIPau9gaPzczcD+HWh6QkR8VLezXQjiz9Hc4DTImJBRFwIPArs1vTW2nLFCcJ6y5PVB5I2ybtM/irpZdKX5dBO5v9rZfg1YFA32q5TjSPSAbjZDcTeoYjoLK4n65oPB56oPH4CWLeB1awN9KtbXv2yofPnaHYsfsDxCdLzYdYhJwjrLfVnQ5wBzABGRcRqpN0vrT4QOgdYr/ZAkmjsC7q76rd5DrBB5fEI4Kk8/CowsDLt3ZXhZ4CFVGIH1m8ylvXqHo8Anm5g3T6LZTnmBGHtsirwEvCqpPfR+fGHnnIVsJWkT+Uzfw4HhvXCemsuAo6WNFTSMNJxkvPztHuBzSV9QNLKwPdrM+XdYZeRjnGsLGkz4MAm1z1c0lfzwe/9gY2Aq/O0acD+edo2wD9X5nsWCEnvaXJ91gc4QVi7fIN0oHU+qTdxSatXGBHPAPsBPwWeJ31J3gP8vdXrzn5ASgTTgfuAO4ATcmwPAMeTjh08RD57qOLfgDVJvYlzSMmmmbhvBTYDXgCOAT4dES/maUcBm5AOgv8n6cA6Oa75OcY78hlno5tYpy3jfB2ELbck9SPtZtknIia3O55mSPoJMDgiDm6g7SHAgRGxU8sDsz7FPQhbrkj6hKTVJb2L9Gv5TeDONofVJUmb5t1PkjQG+Dzw+3bHZX1b/3YHYNbLPkw69XUl0mmpe0dEb+1iWhKrkeIeTtrNdGJEXNXekKyv8y4mMzMr8i4mMzMrcoKwtsq1ivZuov0Bkq5psO3nJN3c/ei6XP53JZ3VjfkeryuD0VaS3iXpwVyKxOxtThDWNpI2J5WmuDw/Ln6hV79QI+KCiNildyMti4jjI+KQ3lxnfXKRNDIX9ev28cR8DOZ/gG/3RIzWdzhBWDt9CbggloEDYUvyBbw0q2zXhcC4fHaXGeAEYe21G3BTMzPU9zIk7SLpoVzG+heSbsrn/Vfn+XEugf2YpN0q41eXdHal/Pax+dqI2npukXSypNrFZfWxHCPp/Dw8QKnU+PP5grK7JK3dyaZ8SNIDOa5zJA2oLHcPSdPycm7NPS0k/ZpUIuPKXHr7CBZdUDcvj9sut/1CLuv9oqRJkjaoLD8kHSbpYeBhgIiYDbwIjOn6VbDlhROEtYWkVYANSVcNd3cZQ4GJpJLZa+ZlbV/XbNs8figwHjg712ACmEC6DmIUqUT2LsAhdfM+CqwFHNdFOONIZb3Xz7F8GXi9k/YHkEqEbwT8A/C9vE1bkXb3fCkv5wzgCknviojPksqXfyqX3h5PLsdNumhuUETclo/pfJdUMmMYMJl05XXV3nn7Nq2Mm8ni1WhtOecEYe1SuxfB/LrxY/Iv57f/SL+aS3YH7o+IS/Pd2k5l8YqmAE9ExK8i4i1SQhgOrJ1/3e8GfD0iXs3lt08G9q/M+3REnJZLknf2ZQ/pjm5rkooPvhURUyPi5U7a/3dEPBkRL5CSz2fy+C8CZ+RS6G9FxARSSY1mftl/iVT6e2Z+Xo4Htqz2IvL0F+q2az6LXhczJwhrm3n5/6p142+PiMHVP9Kv5pJGynf/tTL9tTw4iFRVdUVgTiURnUHqLdSUSmp35NfAJOBiSU9LGq98h7wOVJddLb29AfCNugS5Ps2V5t4AOKUy/wukSrnVyrWlbVuVRa+LmROEtUdEvAr8hbR7pbtK5bvry1p35EnSL/OhlWS0WkRsVg2z0UDyjXh+EBGbknZz7QEc1Mks1XLd1dLbTwLH1SXJgRFR20VUH1MpxieBL9UtY+WIuLWL+d5HKiZoBjhBWHv9L53fRa4rfwA+IGnvfDbOYSx+L4MORcQc4BrgJ5JWk7SCpI0kdSseSTvnWkn9gJdJu5ze6mSWwyStJ2kI6XhBrZrtr4AvS9o2111aRdInJdV6Ws8A1dLbc0n3iqiO+yXwHaWy4LWD8ft2Ef+6pFu03t7QBttywQnC2ulM4IDKQeOmRMRzwL6kg8/Pkw64TqHxMtgHkWoyPUA6g2ci6RhFd7w7z/8y6WDvTSy610PJhaQE9Wj+OxYgIqaQjkP8d47pEeBzlflOAL6Xdx99M+82Ow64JY8bExG/B04i7e56mXRjpq5uL/qvwIRlpC6V9RLXYrK2knQh8JuIuKwHlrUC6RjEARFxwxIHt5zI1z7cC+yYD9abAU4QtoyTtCvpxjuvA98i7WZ6TwNnHZlZF7yLyZZ125EOdj8HfIpUvtvJwawHuAdhZmZF7kGYmVnRMlGAbOjQoTFy5Mh2h2FmtkyZOnXqcxExrLvzLxMJYuTIkUyZMqXdYZiZLVMkPbEk83sXk5mZFTlBmJlZkROEmZkVOUGYmVmRE4SZmRU5QZiZWZEThJmZFTlBmJlZkROEmZkVLRNXUpsZcMzq7Y7AetsxL7V19e5BmJlZkROEmZkVOUGYmVmRE4SZmRU5QZiZWZEThJmZFTlBmJlZkROEmZkVOUGYmVmRE4SZmRU5QZiZWZEThJmZFTlBmJlZkROEmZkVOUGYmVmRE4SZmRU5QZiZWZEThJmZFTlBmJlZUUsThKT/kHS/pBmSLpI0QNKGku6Q9LCkSySt1MoYzMyse1qWICStC3wNGB0R7wf6AfsDJwEnR8TGwIvAwa2KwczMuq/Vu5j6AytL6g8MBOYA/whMzNMnAHu3OAYzM+uGliWIiHgK+DEwi5QYXgKmAvMi4s3cbDawbml+SYdKmiJpyty5c1sVppmZdaCVu5jWAPYCNgTWAVYBdis0jdL8EXFmRIyOiNHDhg1rVZhmZtaBVu5iGgs8FhFzI2IBcCmwPTA473ICWA94uoUxmJlZN7UyQcwCxkgaKEnAx4AHgBuAfXKbccDlLYzBzMy6qZXHIO4gHYy+G5ie13Um8G3g/0l6BFgTOLtVMZiZWff177pJ90XE94Hv141+FNimles1M7Ml5yupzcysyAnCzMyKnCDMzKzICcLMzIqcIMzMrMgJwszMipwgzMysyAnCzMyKnCDMzKzICcLMzIqcIMzMrMgJwszMipwgzMysyAnCzMyKnCDMzKzICcLMzIqcIMzMrMgJwszMipwgzMysyAnCzMyKnCDMzKzICcLMzIqcIMzMrMgJwszMipwgzMysyAnCzMyKnCDMzKzICcLMzIqcIMzMrMgJwszMivq3O4BWG3nkH9odgvWyx0/8ZLtDMOsT3IMwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMrammCkDRY0kRJD0qaKWk7SUMkXSvp4fx/jVbGYGZm3dPqHsQpwNURsQmwBTATOBK4PiI2Bq7Pj83MbCnTsgQhaTVgR+BsgIh4IyLmAXsBE3KzCcDerYrBzMy6r6EEIWkVSStUHq8gaWAXs70HmAucI+keSWdJWgVYOyLmAOT/a3WwzkMlTZE0Ze7cuQ1tjJmZ9ZxGexDXA9WEMBC4rot5+gNbAadHxAeBV2lid1JEnBkRoyNi9LBhwxqdzczMekijCWJARLxSe5CHu+pBzAZmR8Qd+fFEUsJ4RtJwgPz/2eZCNjOz3tBognhV0la1B5K2Bl7vbIaI+CvwpKT35lEfAx4ArgDG5XHjgMubitjMzHpFo9Vcvw78VtLT+fFwYL8G5vt34AJJKwGPAp8nJaXfSDoYmAXs21zIZmbWGxpKEBFxl6RNgPcCAh6MiAUNzDcNGF2Y9LGmojQzs17X6FlMA4FvA4dHxHRgpKQ9WhqZmZm1VaPHIM4B3gC2y49nA8e2JCIzM1sqNJogNoqI8cACgIh4nbSryczM+qhGE8QbklYGAkDSRsDfWxaVmZm1XaNnMX0fuBpYX9IFwA7A51oVlJmZtV+jZzFdK+luYAxp19LhEfFcSyMzM7O2avQsph2Av0XEH4DBwHclbdDSyMzMrK0aPQZxOvCapC2AbwFPAOe1LCozM2u7RhPEmxERpFLdp0bEKcCqrQvLzMzardGD1PMlfQc4ENhRUj9gxdaFZWZm7dZoD2I/0mmtB+cifOsCP2pZVGZm1nad9iAkTSKd3vrHiPhpbXxEzMLHIMzM+rSuehDjgBeBYyTdLel0SXtJGtQLsZmZWRt12oPIu5POBc7NtxzdFtgNOELS68A1uQSHmZn1MY0epCYiFgK35b+jJQ0Fdm1VYGZm1l6NXig3XtJqklaUdL2k54BPRMQFLY7PzMzapNGzmHaJiJeBPUilvv+BdMGcmZn1UY0miNo1D7sDF0XECy2Kx8zMlhKNHoO4UtKDwOvAVyQNA/7WurDMzKzdGupBRMSRpLvJjc73on6NVHbDzMz6qGbuSX0YqWgfwDrA6FYFZWZm7dfsPam3z499T2ozsz7O96Q2M7Mi35PazMyKfE9qMzMr8j2pzcysqKty31vVjZqT/4+QNCIi7m5NWGZm1m5d9SB+0sm0AP6xB2MxM7OlSFflvnfurUDMzGzp0tAxCEkDgK8AHyb1HCYDv4wIl9swM+ujGj2L6TxgPnBafvwZ4NfAvq0IyszM2q/RBPHeiNii8vgGSfe2IiAzM1s6NHqh3D2SxtQeSNoWuKU1IZmZ2dKg0R7EtsBBkmblxyOAmZKmAxERm7ckOjMza5tGE8QnWhqFmZktdRq9kvoJSWsA61fn8YVyZmZ9V6Onuf6QVHvpL+SCffhCOTOzPq3RXUz/Qir5/UazK5DUD5gCPBURe0jaELgYGALcDXy2O8s1M7PWavQsphnA4G6u43BgZuXxScDJEbEx8CJwcDeXa2ZmLdRogjiBdKrrJElX1P66mknSesAngbPyY5F2S03MTSYAezcftpmZtVqju5gmkH75TwcWNrH8nwFHAKvmx2sC8yLizfx4NrBuaUZJhwKHAowYMaKJVZqZWU9oNEE8FxGnNrNgSXsAz0bEVEk71UYXmkZhHBFxJnAmwOjRo4ttzMysdRpNEFMlnQBcQeVWo12c5roDsKek3YEBwGqkHsVgSf1zL2I94OluRW5mZi3VaIL4YP4/pjKu09NcI+I7wHcAcg/imxFxgKTfAvuQzmQaB1zeZMxmZtYLGr1QrifvC/Ft4GJJxwL3AGf34LLNzKyHNNqDQNIngc1Iu4sAiIj/amTeiLgRuDEPPwps00yQZmbW+xo6zVXSL4H9gH8nHWjeF9ighXGZmVmbNXodxPYRcRDwYkT8ANiOVJfJzMz6qEYTxOv5/2uS1gHeBDZsTUhmZrY0aPQYxFWSBgPjgal53FmtCcnMzJYGnSYISR8CnoyIH+bHg0hXUz8InNz68MzMrF262sV0BvAGgKQdgRPzuJfIVzmbmVnf1NUupn4R8UIe3g84MyJ+B/xO0rTWhmZmZu3UVQ+in6RaEvkY8H+VaQ1fQ2FmZsuerr7kLwJukvQc6UymyQCSRpF2M5mZWR/VaYKIiOMkXQ8MB66JiFpV1RVIF82ZmVkf1eVuooi4vTDuz60Jx8zMlhaNXihnZmbLGScIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMralmCkLS+pBskzZR0v6TD8/ghkq6V9HD+v0arYjAzs+5rZQ/iTeAbEfE+YAxwmKRNgSOB6yNiY+D6/NjMzJYyLUsQETEnIu7Ow/OBmcC6wF7AhNxsArB3q2IwM7Pu65VjEJJGAh8E7gDWjog5kJIIsFYH8xwqaYqkKXPnzu2NMM3MrKLlCULSIOB3wNcj4uVG54uIMyNidESMHjZsWOsCNDOzopYmCEkrkpLDBRFxaR79jKThefpw4NlWxmBmZt3TyrOYBJwNzIyIn1YmXQGMy8PjgMtbFYOZmXVf/xYuewfgs8B0SdPyuO8CJwK/kXQwMAvYt4UxmJlZN7UsQUTEzYA6mPyxVq3XzMx6hq+kNjOzIicIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzIicIMzMrcoIwM7MiJwgzMytygjAzsyInCDMzK3KCMDOzorYkCEmfkPSQpEckHdmOGMzMrHO9niAk9QN+DuwGbAp8RtKmvR2HmZl1rh09iG2ARyLi0Yh4A7gY2KsNcZiZWSf6t2Gd6wJPVh7PBratbyTpUODQ/PAVSQ/1Qmx9zVDguXYH0dt0UrsjsBZYLt/L/EBLuoQNlmTmdiSI0hbHO0ZEnAmc2fpw+i5JUyJidLvjMFtSfi+3Rzt2Mc0G1q88Xg94ug1xmJlZJ9qRIO4CNpa0oaSVgP2BK9oQh5mZdaLXdzFFxJuSvgpMAvoB/xMR9/d2HMsJ76KzvsLv5TZQxDt2/5uZmflKajMzK3OCMDOzIieIXiTpLUnTJN0r6W5J2/fw8s+VtE8ePqsnrlCXtJOklyTdI2mmpO9L2jVvxzRJr+SyKdMknbfkW7HsknSUpPsl3Zefj23z+BslzZKkStvLJL3SwTJqz+1bleGvNRHHtpJO7qJNP0mTm9m+Lpa3oqTxuXzODEl3SNq1p5ZfWN/b8UsaJWlaq9bVwfr7S5rXm+vsiKTZkgZ3MH56fj9eLWktSVPy+2mWpLmV99f6pWW34zqI5dnrEbElQP7wnAB8tBUriohDenBxkyNiD0mrANOAqyrbcSPwzYiY0oPrW+ZI2g7YA9gqIv4uaSiwUqXJPGAH4Ob8YR5eWk5EHAccl5f5Su15Lqyvf0S82cEy7gDu6CzeiHgL+EjnW9WUE4AhwKYR8Yak4aTtbYklib+z564P+khEzJM0Hjiydi2JpEOA90fE1zub2T2I9lkNeBFA0iBJ1+dexXRJe+Xxq0j6Q+5xzJC0Xx6/taSbJE2VNCl/GBeTf7XW3gyvSDouL+d2SWvn8cMk/U7SXfmv0w90RLwKTAU26tFnom8YDjwXEX8HiIjnIqJ6fc/FpFO6Af4ZuLTZFUg6X9JPJN0AHC9pjKTbcu/uFkkb53ZjJV2Wh4+VdHZ+vzwq6bA8/u1fwLn99ZIuzb3B8yrr3DOPmyzptNpy6+JaFfgc8LVcPoeImBMRE/P0A/P7eoak46vrl/Sj/L6flHs+tTh3z+0OkfT7PP0hSd+rj78ulv6SfirpzvzL+ZDKNl4n6WLgnsJ8g5R64Hfm5/NTlfVPzOt/WNIJdfOdmD9Xt0laK4/bS6kHdY+kayrji69Fnvb5HO+9ks7J49bOr8mUHNeYPH6YpGvz83Y65YuP6/0JGNVAu8VFhP966Q94i/QL/EHgJWDrPL4/sFoeHgo8kl/0TwO/qsy/OrAicCswLI/bj3SqMMC5wD55+EZgdB4O4FN5eDzwvTx8IfDhPDwCmFmIeSdSjwFgTeBxYLPK9LfXszz/AYPya/tn4BfAR+ueo22B+0indl8DjARe6WKZr9Q9Ph+4DFih8n7ol4c/AVySh8cCl+XhY4HJpN7MWsDzOYb+wLxK+xdJSa4f6VqlMcBA0oWtG+T3429ry62Layvgrg62Yb38nhma37s3kXpa/fP78uO53ZXAH/P4rYEpefwhwFPAGsAqwAPAlnXxjwKm5eGvkH4pA7yLlAxG5G18BRjRQZzjgf3z8Br5dRyQ1/8wsCqwMqlM0DqV+HfL8/y0st41WHSG6JeBk7p4LbYgfScMye1q/y8BxuThkcCMPPwL4Lt5eK8cx+DCNs0GBufX7pfAcZVphwA/6+p97V1Mvau6i2k74DxJ7ye9gMdL2hFYSKpXtTYwHfixpJNIX9KTc/v3A9cq7dLuB8zpYr1vAFfl4anAx/PwWGBTLdo1vpqkVSNift38H5F0T47txPB1K+8QEa9I2pq022Nn4BJJR0bEubnJW8DNpIS+ckQ8Xnnem/HbiFiYhweT3kNd9eiuivTL/llJLwDDeGddo9sjYg6A0v78kcCbwEMR8UQefxFwUJPxbgv8X0Q8l5dxIbAjcDXp83BtbjcdeCnSdVLT8/prJkVErbd9GfBhYEYH69sFeJ+kWm9tdWDjPHxbRMzqZL7dtOj2AwNIiQXgutpnQtKDefyzOf4/5jZTWbTLawTwG0nvJiWpP1fWU3ot/pGU3F8AqP0nfT7fW3mfrCFpZdLzt3tue7mk+s9r1WTS53Ya0HSVMieINomI25T2Uw8jvdjDSD2KBZIeBwZExJ/zl87uwAmSrgF+D9wfEds1sboFkX82kL6oaq/7CsB2EfF6F/NPjog9mljfcinSfvEbgRvzl9w4Uq+u5mLS63dMdT5JxwGfzMsoHnOoeLUyfBzpy/MXkkaRvnRL/l4Zrr7+XbXpMINJuo7UK7gd+BawoaRVIu2GXKxpR8sg/XCpWViJYWFdjPUXa3V28ZaAr0TE9XXxjqXy3Ckd9P9CfrhLnm/viPhL3Xw70vHz90YH438OHB8R/5vXW73nTUfPc2mbBGyTE0o1JjpoX/KRiOj2wXQfg2gTSZuQfv0/T/qV82xODjuTKzBKWgd4LSLOB35M6so/BAzLPZDa2SObdTOMa4CvVmLq6svJOiDpvcrHALItgSfqmk0mHcy9qDoyIo6KiC0bSA71ViftfoF0DKCn3U/6Bbu+0rfSfrUJETE2x/zl/Ov6POBnklaE9N6VdAApgewsaU1J/UnHYW5qMo5dJA2WNJC0S+WWTtpOAr6S11V7XVaubxQRp9ae84h4Ns/39plikj7YZIxVqwNP5edsXAPtrwP2lzQkr3tIZXz1OEXt/fEn4IA87lOk3V8t4QTRu1ZWPq2MtH9xXP7VeQEwWtIU0gv/YG7/AeDO3P4o4Nj8a2If4CRJ95K6jt09XfZreb33SXqAtL/UumcQMEHSA5LuI90M65hqg0h+XNvd0gNOAn4kqbMvzG6LiNdIPyCuIyW3p0nHzkqOzNNm5t7TpaQfPbOBo0k9q2mkXVl/aDKUm0nHy+4BLoqIzk5pPYN0zGCapBnA6TS2p+QHwEClg+n3U/faNekYUk/xJuCZrhpHxH2kYyB/yp/1H+VJhwE7VD6fX8zjvw+MlXQ36RjhU7SIS22YWYckDcrHV0T68p0eEaf14vobOh3TWsM9CDPrzL/lX7UPkM7i+VWb47Fe5B6EmZkVuQdhZmZFThBmZlbkBGFmZkVOEMsxSVfkUwFrj4fkGi8P5/9r5PGfVqpSOlnSmnncRkp1bTpa9he0qJLkDC2qL3WupNeU6vfU2p4iKfKFg9VlfF6Lqk2+kZc3TdKJTWzj+pIuaaDdpGpMS0LJEUq1g2bkmA/oiWV3ss5JklbVUlJlVNJhrd5maz0fpO4DlKqsLqi/4rKLef6ZdD3F5hHx/jxuPPBCRJyoVHJgjYj4tqRbgV1JFzkNiIjTlMouHB0RDxeWvR7pHPCtIuIlSYNItaMek3Qu6YK/8RFxvqQVSOfHDwG27OgaAaWry0eXpmspq86pdEvdTwL/EhHzlaq37hkRLS+Hni8Qey4i3lH+uYP2In0PLOyy8TJA0pBKqQpbQu5B9A3/ADykVOnzfV01zl/Y/49UPKxqL2BCHp4A7J2HF5JqygwEFkj6CDCnlByytYD5pOJoRMQrEfFYZfpFLLoqdyfSlbFNfcErVcY8Q9K1wDm5RzNZqYLmVC26F8Pb9wpQJ5U5lWvq5/YzlKpu3i/pj5IG5DZjco/oVqUqpB1dsPVdoHaFMRExr5YcJH089yimS/qVpJUq6z9OqdruXZK2UqoE+hdJX8xtxkq6QeleEg9I+nn+gu/sngBHalFl06Mrz8kMSb8E7qau9HjetgfyPCflce+oUKp0T4YnJK2W20ipSunQ/Pp8PY+/Wanq6Z25V7V9Hr+KUjXheyVdpFS1dMvcC/q1FlWA7fReGJJWVqoYeyOpaJ71lK6q+fmvyyqeJ6FsGdAAAAXISURBVJN+Adf/1So77tzB9Fsry5jcQZuxefq3Oph+amUZq5IqNN5CuvL088AqncT8T1QqRObx8+ravZj/f5xUjOxKUhmBSaTeRUfPSb/cZhZwDrmSbJ52Lqnncjup6uWvSPfEeBwY2skyF5tOSm53kno0kJJXbXgT4I48XK30WazMmafVKl+OAhYAH8jjL2VRlc+ZpNo4kEqfTCvEuQYwt4NtGJjXuVF+fAHw1cr6v5iHTyNdNbwKqWjjX/P4scBr+XXrB/wfqX5QNf5qldPdSZU/RfoxeDXpqvtRpKT/oUKMa5NKbNT2LgyubFepQunPgc/m4R2Aqyuvz9fz8M2V9ntW2hwJ/DwPb0GqTbQlqcDfHysxvaNSaR7/wbz+v+TnbMvKtE0pf2amAavmNhM7mH5Ann5QB9NrVXMHd7KO97b7u6kn/toegP9a8KKmD8etwMuFaVsCV+bhkTSQIOrGjQMOJ5WDnkj6gh9YaCdgG+A7pPLlx+Tx55ISxBHAv5FKYK9A9xLEUZXHa5C+cGfkD+j8PL4+QZxemedaFpVTriaImZU2R+UvsqHAXyrjt6KcIIbQcYLYmlTZtPZ4V+A3lfWvnYcPrYvzaVIpj7F18x8K/Lgu/mqC+BnwWOVL6xFSzaZRwMMdxLgiqbLqWaQfESvm8Vvk52s6qTpprQT8jpXh04DPV16faoLYNg+vCzyYh68iFZOrrfs+0vtzTeBR4JT8HKkQ5xHA66Ty3u9q92eur/65musSUrq1486FSRdH2pe/M+kXe73XIqLW1Z5MueDWNyPiOknfIhfnqvOniKgWGNuA9AXwGeBeyvVktgO2zvv0+wNrSboxInYCnpE0PCLmKN2E6Nm6bR1IShC7kgr97QX8a45tsStsI32K7yTVkrqW1JOoxnMxaffGhIhYmPeUoHQTlVrNmd1j8Zvu1KtWDv0G6df5gaQvuXfczjNrRWXT84DNgVkRsaekBZJGxDtLS3dV37tazbQaQ7W6abOVTY+NiLPr4h3F4s/dooWlgpGjSb3G/UlJfBc6rlA6GThX6eSFPYH/7GLbqs958fmIiOclbQ7sRqoX9mlSMqyaQOpFHQZ8TOkmO1dHPhaldLvdCzuI5SORjg1NpHwTnR9FxAWSDiLtiq33UETsl3fp3djBOvaLiIc6mLbMcIJYQhHxH11Mv4H0q6izNp3eOjEifsSiAl7vIGkk6RffUNIX8Q4R8XwHyzqdVMCsNt9VOTkAXEFKACfm/5fXzX4EcEr+ElmZ9OW0kLTrpBrPOsC7I+LuPOodlU0jYpako0iF4Krjf076MmrW6sAjERGSxtHYXbYaFhFz8xf/6Ei3V92/Mq3+HgknAr+Q9JlYdJB6X1IPZ2NJ74mIR0nJrNnKpmMkjSAVaPsX0q/2jkwCvifp4oh4Venkgb91tnClM7kGRMRVku4gldiADiqU5uf7clJv5d5orrT0zXkbJkv6AKnni6RhwN8i4reSHiPd7GYxEfEMqTLuCZI+ChwMnCLp1Ig4JSJqNxbqUETs08X080hVajuaPq+rdSzrnCD6hrdId5i6cwmXcyLpRicHk44f7FubkL/0R0fEMXnUT0jHEeax6GB2zYqkGx2tQ/pCmkuhUmxEnLGE8Vb9NzBR0mdISefvXbTvji+QDojPJ5Vc7qiy6Wmk4wdTJb1BOqYxPiJey8/tpZL6ke4b3Wxto1tJz/1mpF+vV3TUMP/a3wS4PffQ5pN6fJ1ZPcf3LtKuv9ov6GNIFUpnk3qG1QPblwC3kRJeM04j3fDoPlJvcgbpOV0fODsnowC+3dlCIuIm4CZJqwOjm4zBOuHTXM0apFzZNA8fRbo15Dd6cf1jSQe16xPyMknplNz+EfE3pXtpXANsHEvRKcvLO/cgzBq3p6QjSJ+bx2nNTXqWJ4OA63OiEPAlJ4eli3sQZmZW5AvlzMysyAnCzMyKnCDMzKzICcLMzIqcIMzMrOj/A/rLJSMoV+ZEAAAAAElFTkSuQmCC"
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training Throughput Example Plot\n",
"\n",
"![throughput.png](attachment:throughput.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note:** For this example, the compiler delivers higher throughput for an ML model as measured by samples per second. However, you might not see an improvement in the total training time for your model. The total training time depends on several other factors, such as key components of the Trainer and TFTrainer APIs."
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down
Loading

0 comments on commit 1b3e9ca

Please sign in to comment.