Skip to content

Commit

Permalink
Added Studio Lab button at REDME.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Soh Ohara committed May 24, 2022
1 parent f0f0e1c commit 1d0bba3
Showing 1 changed file with 53 additions and 6 deletions.
59 changes: 53 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,59 @@ Watch all class video recordings in this [YouTube playlist](https://www.youtube.

## Course Overview
There are five lectures, one final project and five assignments for this class.
| Lecture 1 | Lecture 2 | Lecture 3 | Lecture 4 | Lecture 5 |
| :---: | :---: | :---: | :---: | :---: |
| Decision Trees | Bias-variance trade-off | Bootstrapping | Random Forest Proximities | Boosting |
| Impurity Functions | Error Decomposition | Bagging | Some use cases for Proximities | Gradient Boosting |
| CART Algorithm | Extra Trees Algorithm | Random Forests | Feature Importance in Trees | XGBoost, LightGBM and CatBoost |
| Regularization | Bias-variance and Randomized Ensembles | | Feature Importance in Random Forests | |

Lecture 1

| title | studio lab |
| :---: | ---: |
| Decision Trees | - |
| Impurity Functions | - |
| CART Algorithm | - |
| Regularization | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_1/DTE-LECTURE-1-PRUNE.ipynb)|

Lecture 2

| title | studio lab |
| :---: | ---: |
| Bias-variance trade-off | - |
| Error Decomposition | - |
| Extra Trees Algorithm | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_2/DTE-LECTURE-2-TREE-VARIANCE.ipynb)|
| Bias-variance and Randomized Ensembles | - |


Lecture 3

| title | studio lab |
| :---: | ---: |
| Boostrapping | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_3/DTE-LECTURE-3-BOOTSTRAP.ipynb)|
| Bagging |Bagging [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_3/DTE-LECTURE-3-BAGGING-OVERFIT.ipynb) <br> tree correlation [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_3/DTE-LECTURE-3-TREE-CORRELATION.ipynb)|
| Random Forests | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_3/DTE-LECTURE-3-RANDOM-FOREST.ipynb)|


Lecture 4

| title | studio lab |
| :---: | ---: |
| Random Forest Proximities | - |
| Some use cases for Proximities | - |
| Feature Importance in Trees | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_4/DTE-LECTURE-4-PERMUTATION-FEATURE-IMP.ipynb)|
| Feature Importance in Random Forests |[![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_4/DTE-LECTURE-4-FEATURE-IMPORTANCE.ipynb) |


Lecture 5

| title | studio lab |
| :---: | ---: |
| Boosting | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_5/DTE-LECTURE-5-BOOSTING.ipynb)|
| Gradient Boosting | - |
| XGBoost, LightGBM and CatBoost | CatBoost [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_5/DTE-LECTURE-5-CATBOOST.ipynb) <br> LightGBM [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/lecture_5/DTE-LECTURE-5-LIGHTGBM.ipynb)|

Final Project

| title | studio lab |
| :---: | ---: |
| Final Project | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/final_project/DTE-FINAL-PROJECT.ipynb)|


__Final Project:__ Practice working with a "real-world" computer vision dataset for the final project. Final project dataset is in the [data/final_project folder](https://github.com/aws-samples/aws-machine-learning-university-dte/tree/main/data/final_project). For more details on the final project, check out [this notebook](https://github.com/aws-samples/aws-machine-learning-university-dte/blob/main/notebooks/final_project/DTE-FINAL-PROJECT.ipynb).

Expand Down

0 comments on commit 1d0bba3

Please sign in to comment.