-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 796c43c
Showing
10 changed files
with
1,623 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# Metanolic_health_Cellsystems | ||
Scripts and data used to analyze data for "Systems genetics of metabolic health in the BXD mouse genetic reference population" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,273 @@ | ||
######################################################################## | ||
#clean.workplace | ||
######################################################################## | ||
rm(list = ls()) | ||
dev.off() | ||
cat("\014") | ||
######################################################################## | ||
#Library and Function | ||
######################################################################## | ||
|
||
library(ggplot2) | ||
library(dplyr) | ||
library(data.table) | ||
library(ggrepel) | ||
library(parallel) | ||
library(Hmisc) | ||
library(RColorBrewer) | ||
library(scales) | ||
library(ggpubr) | ||
library(cowplot) | ||
library(FactoMineR) | ||
|
||
`%ni%` <- Negate(`%in%`) | ||
|
||
######################################################################## | ||
#Obtained health score and its related phenotype | ||
######################################################################## | ||
phenotypic_combine <- openxlsx::read.xlsx("./Data_upload/Phenotypic data.xlsx") | ||
rownames(phenotypic_combine) <- phenotypic_combine$Strain_id | ||
|
||
which.col <- c("MHS", "body_fat", "Blood_Glucose_.mmol.L.", "Resting_insulin", "Blood_Triglycerides_.mmol.L.", "Blood_TotalCholesterol_.mmol.L.") | ||
|
||
result <- phenotypic_combine[, which.col] | ||
result <- result[!is.na(result$MHS),] | ||
result <- result[!is.na(result$Resting_insulin),] | ||
result <- result[!is.na(result$Blood_Glucose_.mmol.L.),] | ||
result <- result[!is.na(result$Blood_Triglycerides_.mmol.L.),] | ||
result <- result[!is.na(result$body_fat),] | ||
result <- result[!is.na(result$Blood_TotalCholesterol_.mmol.L.),] | ||
result$Strain_id <- rownames(result) | ||
result_melt <- reshape2::melt(result, id.var = "Strain_id") | ||
result_melt <- result_melt[order(result_melt$value, decreasing = T), ] | ||
result_melt <- merge(Strain_id, result_melt, by = "Strain_id") | ||
result_melt$split <- paste0(result_melt$strain, "_", result_melt$diet, "_", result_melt$variable) | ||
|
||
data_lt <- split(result_melt, result_melt$split, drop = T) | ||
|
||
data_ave <- do.call(rbind, | ||
lapply(data_lt, function(y){ #y= data_lt[["BXD39_HFD_Resting_insulin"]] | ||
ave <- as.data.frame(mean(y$value)) | ||
ave$sd <- sd(y$value) | ||
colnames(ave) <- c("ave", "sd") | ||
ave$strain <- unique(y$strain) | ||
ave$pheno <- unique(y$variable) | ||
ave$diet <- unique(y$diet) | ||
return(ave) | ||
})) | ||
|
||
|
||
data <- data_ave | ||
data$id <- paste0(data$strain, "_",data$diet) | ||
data <- reshape2::dcast(data, id ~ pheno, value.var = "ave" ) | ||
data$diet <- gsub(".*_", "", data$id) | ||
data$strain <- gsub("_.*", "", data$id) | ||
|
||
####Figure1 B | ||
#Z score | ||
Zscore_for <- function(x){ | ||
z <- (x - mean(x)) / sd(x) | ||
return(z) | ||
} | ||
#need to do Z-score | ||
data_ave$merge <- paste0(data_ave$strain, "_", data_ave$diet) | ||
data_ave <- data_ave[order(data_ave$ave, decreasing = F),] | ||
tt <- split(data_ave, data_ave$pheno) | ||
data_ave <- do.call(rbind, lapply(tt, function(lt){ #lt = tt[[1]] | ||
lt$zscore <- Zscore_for(lt$ave) | ||
lt | ||
})) | ||
|
||
data_ave$label <- paste0(gsub("_", " (", data_ave$merge), ")") | ||
|
||
# Hierarchical clustering on phenotypes1 | ||
data_dcast <- reshape2::dcast(data_ave, merge~pheno, value.var="zscore") | ||
data_dcast[is.na(data_dcast)] <- 0 # For the purpose of clustering, we consider "NA" equivalent to no correlation | ||
rownames(data_dcast) <- data_dcast$merge | ||
hc <- hclust(dist(t(data_dcast[,-1]))) | ||
rowInd <- hclust(dist(data_dcast[,-1]))$order | ||
colInd <- hclust(dist(t(data_dcast[,-1])))$order | ||
|
||
orders <- data_ave[data_ave$pheno == "MHS", ] | ||
orders <- orders$label[order(orders$zscore, decreasing = T)] | ||
data_ave$label <- factor(data_ave$label, levels = orders) | ||
data_ave$pheno <- factor(data_ave$pheno, levels = c( "Blood_Triglycerides_.mmol.L.", "Blood_Glucose_.mmol.L.", "Blood_TotalCholesterol_.mmol.L.", "Resting_insulin", "body_fat", "MHS" ), | ||
labels = c("Triglycerides", "Glucose", "Total Cholesterol", "Insulin", "Body fat", "Metabolic health score")) | ||
|
||
Heatmap_palette <- c(rev(brewer.pal(7,"Blues")), "white", brewer.pal(7,"Reds")) | ||
g <- ggplot(data_ave, aes(x = label, y = pheno, col = zscore, fill = zscore)) + | ||
geom_tile() + | ||
#facet_grid(cols = vars(diet) , space="free", scales="free") + | ||
scale_fill_gradientn(colours= Heatmap_palette , limits=c(-2,2) ,na.value="gray87", oob = squish) + | ||
scale_color_gradientn(colours= Heatmap_palette , limits=c(-2,2) ,na.value="gray87", oob = squish) + | ||
scale_y_discrete(expand=c(0, 0))+ | ||
#coord_fixed(2) + | ||
theme_bw(base_size = 8) + | ||
ylab(NULL) + | ||
xlab(NULL) + | ||
theme( | ||
plot.title = element_text(hjust = 0.5, size = 8, face = "bold"), | ||
axis.title = element_text(size = 8), | ||
#axis.text.x = element_blank(), | ||
#axis.ticks.x = element_blank(), | ||
axis.text.x = element_text(angle = 90, size = 10, color = "black", vjust = 0.5, hjust = 1), | ||
axis.text.y = element_text(size = 8, color = "black"), | ||
legend.title = element_text(size = 8), | ||
legend.text = element_text(size = 8), | ||
strip.background = element_rect( fill = "white"), | ||
strip.text = element_text(size = 8), | ||
legend.position = "right" | ||
#panel.border = element_blank() | ||
) | ||
|
||
g2 <- ggplot(data_ave, aes(x = label, y = "diet", col = diet, fill = diet)) + | ||
geom_tile() + | ||
scale_color_manual(values = c("CD" = "#FF9300", "HFD" = "#107F40")) + | ||
scale_fill_manual(values = c("CD" = "#FF9300", "HFD" = "#107F40")) + | ||
scale_y_discrete(expand=c(0, 0))+ | ||
#coord_fixed(2) + | ||
theme_bw(base_size = 8) + | ||
ylab(NULL) + | ||
xlab(NULL) + | ||
theme( | ||
plot.title = element_text(hjust = 0.5, size = 8, face = "bold"), | ||
axis.title = element_text(size = 8), | ||
#axis.text.x = element_blank(), | ||
#axis.ticks.x = element_blank(), | ||
axis.text.x = element_text(angle = 90, size = 10, color = "black", vjust = 0.5, hjust = 1), | ||
axis.text.y = element_text(size = 8, color = "black"), | ||
legend.title = element_text(size = 8), | ||
legend.text = element_text(size = 8), | ||
strip.background = element_rect( fill = "white"), | ||
strip.text = element_text(size = 8), | ||
legend.position = "right" | ||
#panel.border = element_blank() | ||
) | ||
|
||
g_all <- plot_grid(g,g2, align = "hv", nrow = 2, ncol =1, rel_heights = c(2.8,1.2)) | ||
|
||
######################################################################## | ||
#Use scatter plot to show Metabolic health score (Figure 1C) | ||
######################################################################## | ||
|
||
Strain_id <- phenotypic_combine[,c("Strain_id", "strain", "diet")] | ||
which.col <- c("Strain_id","strain","diet","MHS") | ||
result <- phenotypic_combine[, which.col] | ||
result <- result[!is.na(result$MHS),] | ||
result$split <- paste0(result$strain, "_", result$diet) | ||
|
||
data_lt <- split(result, result$split, drop = T) | ||
|
||
data_ave <- do.call(rbind, | ||
lapply(data_lt, function(y){ #y= data_lt[[1]] | ||
ave <- as.data.frame(mean(y$MHS)) | ||
ave$sd <- sd(y$MHS) | ||
colnames(ave) <- c("ave", "sd") | ||
ave$strain <- unique(y$strain) | ||
ave$diet <- unique(y$diet) | ||
return(ave) | ||
})) | ||
|
||
data_df <- reshape2::dcast(data_ave, strain~diet, value.var = "ave") | ||
|
||
data.plot <- phenotypic_combine[, c("Strain_id", "strain", "diet", "MHS")] | ||
data.plot <- data.plot[!is.na(data.plot$MHS), ] | ||
data.plot.tt <- split(data.plot, data.plot$strain) | ||
|
||
Pvalue <- do.call(rbind, lapply(data.plot.tt, function(tt){ #tt= data.plot.tt[[3]] | ||
print(unique(tt$strain)) | ||
if (length(unique(tt$diet)) > 1) { | ||
|
||
HFD <- tt[tt$diet == "HFD", ] | ||
CD <- tt[tt$diet == "CD", ] | ||
|
||
if(nrow(HFD) > 1 & nrow(CD) >1){ | ||
P <- t.test(HFD$MHS, CD$MHS) | ||
out <- data.table(strain = unique(tt$strain), | ||
P = P$p.value) | ||
}else{ | ||
out <- NULL | ||
} | ||
}else{ | ||
out <- NULL | ||
} | ||
out | ||
})) | ||
tmp <- Pvalue[Pvalue$P > 0.05, ] | ||
#data_df$is_highlight <- ifelse(abs(data_df$CD - data_df$HFD) < 1, "Yes", "No") | ||
data_df$is_highlight <- ifelse((data_df$strain %in% tmp$strain) & abs(data_df$CD - data_df$HFD) < 1, "Yes", "No") | ||
data_df$label <- data_df$strain | ||
#data_df$label[data_df$is_highlight == "No"] <- NA | ||
|
||
g <- ggplot(data = data_df, aes(x= CD, y = HFD, label = label, color = is_highlight)) + | ||
geom_point() + | ||
scale_color_manual(values = c("Yes" = "orange", "No" = "#969696")) + | ||
geom_text_repel(size=3, parse = F) + | ||
geom_hline(yintercept = 0)+ | ||
geom_vline(xintercept = 0) + | ||
theme_bw() + | ||
theme(axis.text.x = element_text(size =10, color = "black"), | ||
plot.title = element_text(hjust = 0.5, size = 22, face = "bold"), | ||
axis.title = element_text(size = 13), | ||
axis.text.y = element_text(size = 10, color = "black"), | ||
axis.ticks = element_blank(), | ||
legend.title = element_text(size = 13, color = "black"), | ||
legend.text = element_text(size = 11), | ||
strip.background = element_rect( fill = "white"), | ||
panel.grid = element_blank(), | ||
#panel.border = element_blank() | ||
plot.margin = unit(c(0.2,0.2,0.2,0.2), "cm"), | ||
legend.position = "right" | ||
) | ||
|
||
|
||
######################################################################## | ||
#the correlation with other phenotype (Figure 1D) | ||
######################################################################## | ||
|
||
which.col <- c("MHS", "HOMA_IR", "OGTT_AUC_Glucose", "BW_gained", "scWAT.", "Liver.", "Blood_ALAT_.u.L.", "diet") | ||
#conditions | ||
Diets <- c("HFD", "CD") | ||
all(which.col %in% colnames(phenotypic_combine) ) | ||
data <- phenotypic_combine[, colnames(phenotypic_combine) %in% which.col] | ||
data <- data[!is.na(data$MHS),] | ||
|
||
|
||
lowerFn <- function(data, mapping, method = "lm", ...) { | ||
p <- ggplot(data = data, mapping = mapping) + | ||
geom_point(alpha = 0.5, size = 0.8) + | ||
geom_smooth(method = method, se=FALSE) + | ||
stat_cor( | ||
aes(label = paste(..r.label.., ..p.label.., sep = "~`,`~")), | ||
method = "pearson" | ||
) | ||
p | ||
} | ||
|
||
g <- ggpairs(data, | ||
mapping = aes(color = diet, group = diet), | ||
lower = list(continuous = wrap(lowerFn, method = "lm")), | ||
upper = list(continuous = "blankDiag"), | ||
diag = list(continuous = "blankDiag"), | ||
#insulin resistance | ||
columns = c("health_score_real","HOMA_IR", "OGTT_AUC_Glucose"), | ||
columnLabels = c("Metabolic health score", "HOMA (IR)", "Glucose (AUC)")) + | ||
|
||
# columns = c("health_score_real", "BW_gained", "scWAT."), | ||
# columnLabels = c("Metabolic health score", "BW (gained)", "scWAT (%)")) + | ||
# columns = c("health_score_real", "Liver.", "Blood_ALAT_.u.L."), | ||
# columnLabels = c("Metabolic health score", "Liver weight (%)", "ALT")) + | ||
scale_colour_manual("",values = c("CD" = "#FF9300", "HFD" = "#107F40")) + | ||
theme_bw() + | ||
theme( | ||
plot.title = element_text(hjust = 0.5, size = 10, face = "bold"), | ||
axis.title = element_text(size = 8), | ||
axis.text.x = element_text(size = 8, color = "black"), | ||
axis.text.y = element_text(size = 8, color = "black"), | ||
legend.title = element_text(size = 8, face = "bold"), | ||
legend.text = element_text(size = 8), | ||
strip.background = element_rect( fill = "white"), | ||
strip.text = element_text(size = 8), | ||
legend.position = "bottom" | ||
#panel.border = element_blank() | ||
) |
Oops, something went wrong.