Skip to content

Commit

Permalink
Eddie Bergman: fix-1527-Fix-mlp-regressor-test-fixture-values (#1528)
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed Jun 23, 2022
1 parent 0650e81 commit f533b00
Show file tree
Hide file tree
Showing 71 changed files with 3,666 additions and 3,382 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
210 changes: 105 additions & 105 deletions development/_sources/examples/20_basic/example_classification.rst.txt

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ View the models found by auto-sklearn
rank ensemble_weight type cost duration
model_id
2 1 1.0 random_forest 0.447294 3.239878
2 1 1.0 random_forest 0.447294 3.20855
Expand Down Expand Up @@ -183,11 +183,11 @@ Print the final ensemble constructed by auto-sklearn
.. code-block:: none
{ 2: { 'balancing': Balancing(random_state=1),
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fbe500c3fa0>,
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f7e0c3c7a90>,
'cost': 0.4472941828699525,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4aaaad00>,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df43bf250>,
'ensemble_weight': 1.0,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe500c3280>,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7e0c3c7730>,
'model_id': 2,
'rank': 1,
'sklearn_classifier': RandomForestClassifier(max_features=15, n_estimators=512, n_jobs=1,
Expand Down Expand Up @@ -264,7 +264,7 @@ Get the Score of the final ensemble
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 32.104 seconds)
**Total running time of the script:** ( 0 minutes 16.190 seconds)


.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,9 +123,16 @@ View the models found by auto-sklearn

.. code-block:: none
rank ensemble_weight type cost duration
rank ensemble_weight type cost duration
model_id
28 1 1.0 gaussian_process 1.718292e-08 3.467824
18 1 0.74 gaussian_process 0.074587 2.560028
2 2 0.06 random_forest 0.143340 2.270703
19 3 0.02 random_forest 0.193081 1.668876
4 4 0.02 extra_trees 0.272649 1.086047
10 5 0.08 decision_tree 0.287538 0.488245
23 6 0.04 extra_trees 0.386024 14.196754
13 7 0.02 k_nearest_neighbors 0.402076 0.477249
11 8 0.02 k_nearest_neighbors 0.445704 0.578057
Expand All @@ -152,17 +159,81 @@ Print the final ensemble constructed by auto-sklearn

.. code-block:: none
{ 28: { 'cost': 1.71829196426998e-08,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4fe3f970>,
'ensemble_weight': 1.0,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4fe8ee80>,
'model_id': 28,
'rank': 1,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe50675820>,
'sklearn_regressor': GaussianProcessRegressor(alpha=1.0000000000000018e-08,
kernel=RBF(length_scale=[1, 1, 1, 1, 1]),
{ 2: { 'cost': 0.1433397183147025,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df8f73b50>,
'ensemble_weight': 0.06,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df90a9700>,
'model_id': 2,
'rank': 1,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df39ca7f0>,
'sklearn_regressor': RandomForestRegressor(max_features=1.0, n_estimators=512, n_jobs=1,
random_state=1, warm_start=True)},
4: { 'cost': 0.272649085716099,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df33dda00>,
'ensemble_weight': 0.02,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df6dc75e0>,
'model_id': 4,
'rank': 2,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df6dc7b80>,
'sklearn_regressor': ExtraTreesRegressor(criterion='friedman_mse', max_features=0.5144630032500372,
min_samples_leaf=2, min_samples_split=12, n_estimators=512,
n_jobs=1, random_state=1, warm_start=True)},
10: { 'cost': 0.2875377751366157,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df9241640>,
'ensemble_weight': 0.08,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df4696970>,
'model_id': 10,
'rank': 3,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df46963d0>,
'sklearn_regressor': DecisionTreeRegressor(criterion='friedman_mse', max_depth=65,
min_samples_leaf=13, min_samples_split=5, random_state=1)},
11: { 'cost': 0.4457038470176755,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df8f73340>,
'ensemble_weight': 0.02,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df30fa850>,
'model_id': 11,
'rank': 4,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df30fa580>,
'sklearn_regressor': KNeighborsRegressor(n_neighbors=1, p=1)},
13: { 'cost': 0.40207569685895683,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df46ac310>,
'ensemble_weight': 0.02,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df38da970>,
'model_id': 13,
'rank': 5,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df38da190>,
'sklearn_regressor': KNeighborsRegressor(n_neighbors=1, weights='distance')},
18: { 'cost': 0.07458725526965715,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df5088070>,
'ensemble_weight': 0.74,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df43a5730>,
'model_id': 18,
'rank': 6,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df43a5d60>,
'sklearn_regressor': GaussianProcessRegressor(alpha=4.472780670840208e-11,
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
n_restarts_optimizer=10, normalize_y=True,
random_state=1)}}
random_state=1)},
19: { 'cost': 0.19308057275847956,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df6e0c490>,
'ensemble_weight': 0.02,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df8ddb3a0>,
'model_id': 19,
'rank': 7,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df4f34610>,
'sklearn_regressor': RandomForestRegressor(bootstrap=False, max_features=0.9700603657014197,
min_samples_leaf=4, n_estimators=512, n_jobs=1,
random_state=1, warm_start=True)},
23: { 'cost': 0.38602414835028154,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df50b81f0>,
'ensemble_weight': 0.04,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df90c91f0>,
'model_id': 23,
'rank': 8,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df90c9460>,
'sklearn_regressor': ExtraTreesRegressor(criterion='mae', max_features=0.9574780663890835,
min_samples_leaf=2, min_samples_split=17, n_estimators=512,
n_jobs=1, random_state=1, warm_start=True)}}
Expand Down Expand Up @@ -190,7 +261,7 @@ Get the Score of the final ensemble

.. code-block:: none
R2 score: 0.9999998896841648
R2 score: 0.9288059150193577
Expand Down Expand Up @@ -443,7 +514,7 @@ Get the configuration space
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 1 minutes 55.016 seconds)
**Total running time of the script:** ( 1 minutes 55.450 seconds)


.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:
Expand Down
50 changes: 25 additions & 25 deletions development/_sources/examples/20_basic/example_regression.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -124,12 +124,12 @@ View the models found by auto-sklearn
rank ensemble_weight type cost duration
model_id
25 1 0.46 sgd 0.436679 0.682268
29 2 0.04 gaussian_process 0.445373 13.078738
6 3 0.30 ard_regression 0.455042 0.696445
27 4 0.12 ard_regression 0.462249 0.678429
11 5 0.02 random_forest 0.507400 9.128839
7 6 0.06 gradient_boosting 0.518673 1.157540
25 1 0.46 sgd 0.436679 0.651642
29 2 0.04 gaussian_process 0.445373 11.476568
6 3 0.30 ard_regression 0.455042 0.670588
27 4 0.12 ard_regression 0.462249 0.657819
11 5 0.02 random_forest 0.507400 9.832774
7 6 0.06 gradient_boosting 0.518673 1.109341
Expand Down Expand Up @@ -157,69 +157,69 @@ Print the final ensemble constructed by auto-sklearn
.. code-block:: none
{ 6: { 'cost': 0.4550418898836528,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4b698310>,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df8d78e80>,
'ensemble_weight': 0.3,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a87edc0>,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df8c789a0>,
'model_id': 6,
'rank': 1,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a87e2b0>,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df8c78100>,
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
copy_X=False, lambda_1=1.2037591637980971e-06,
lambda_2=4.358378124977852e-09,
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
7: { 'cost': 0.5186726734789994,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4a10c130>,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df8d597c0>,
'ensemble_weight': 0.06,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4de46130>,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df46ac2b0>,
'model_id': 7,
'rank': 2,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4de46bb0>,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df46ac8b0>,
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
learning_rate=0.012607824914758717, max_iter=512,
max_leaf_nodes=10, min_samples_leaf=8,
n_iter_no_change=0, random_state=1,
validation_fraction=None, warm_start=True)},
11: { 'cost': 0.5073997164657239,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe50068550>,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df4399a30>,
'ensemble_weight': 0.02,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe633f2ca0>,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df8f6c640>,
'model_id': 11,
'rank': 3,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe633f29a0>,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df8f6c850>,
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
max_features=0.6277363920171745, min_samples_leaf=6,
min_samples_split=15, n_estimators=512, n_jobs=1,
random_state=1, warm_start=True)},
25: { 'cost': 0.43667876507897496,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe50688f70>,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df9008c10>,
'ensemble_weight': 0.46,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a9a55e0>,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df8e44c40>,
'model_id': 25,
'rank': 4,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a9a5430>,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df8e443a0>,
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
power_t=0.21521743568582094, random_state=1,
tol=0.002431731981071206, warm_start=True)},
27: { 'cost': 0.4622486119001967,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe500a31c0>,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df30bea30>,
'ensemble_weight': 0.12,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a0e5550>,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df4618550>,
'model_id': 27,
'rank': 5,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a0e54f0>,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df4618dc0>,
'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05, alpha_2=9.504988116581138e-07,
copy_X=False, lambda_1=6.50650698230178e-09,
lambda_2=4.238533890074848e-07,
threshold_lambda=78251.58542976103, tol=0.0007301343236220855)},
29: { 'cost': 0.44537254042256413,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4de625e0>,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f7df4569d90>,
'ensemble_weight': 0.04,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a34a2e0>,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f7df6dc7100>,
'model_id': 29,
'rank': 6,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a34a520>,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f7df6dc7ee0>,
'sklearn_regressor': GaussianProcessRegressor(alpha=0.323250809620855,
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
n_restarts_optimizer=10, normalize_y=True,
Expand Down Expand Up @@ -303,7 +303,7 @@ the true value).

.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 1 minutes 59.300 seconds)
**Total running time of the script:** ( 2 minutes 2.092 seconds)


.. _sphx_glr_download_examples_20_basic_example_regression.py:
Expand Down
Loading

0 comments on commit f533b00

Please sign in to comment.