Skip to content

Commit

Permalink
Matthias Feurer: Update stale.yaml (#1142)
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed May 5, 2021
1 parent 6307fc1 commit ec1008e
Show file tree
Hide file tree
Showing 53 changed files with 1,043 additions and 1,173 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified master/_images/sphx_glr_example_pandas_train_test_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified master/_images/sphx_glr_example_pandas_train_test_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
68 changes: 26 additions & 42 deletions master/_sources/examples/20_basic/example_classification.rst.txt

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -235,7 +235,7 @@ Get the Score of the final ensemble
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 15.196 seconds)
**Total running time of the script:** ( 0 minutes 18.094 seconds)


.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:
Expand Down
10 changes: 5 additions & 5 deletions master/_sources/examples/20_basic/example_regression.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -130,21 +130,21 @@ Print the final ensemble constructed by auto-sklearn

.. code-block:: none
[(0.640000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'regressor:random_forest:bootstrap': 'True', 'regressor:random_forest:criterion': 'mse', 'regressor:random_forest:max_depth': 'None', 'regressor:random_forest:max_features': 1.0, 'regressor:random_forest:max_leaf_nodes': 'None', 'regressor:random_forest:min_impurity_decrease': 0.0, 'regressor:random_forest:min_samples_leaf': 1, 'regressor:random_forest:min_samples_split': 2, 'regressor:random_forest:min_weight_fraction_leaf': 0.0},
[(0.760000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'regressor:random_forest:bootstrap': 'True', 'regressor:random_forest:criterion': 'mse', 'regressor:random_forest:max_depth': 'None', 'regressor:random_forest:max_features': 1.0, 'regressor:random_forest:max_leaf_nodes': 'None', 'regressor:random_forest:min_impurity_decrease': 0.0, 'regressor:random_forest:min_samples_leaf': 1, 'regressor:random_forest:min_samples_split': 2, 'regressor:random_forest:min_weight_fraction_leaf': 0.0},
dataset_properties={
'task': 4,
'sparse': False,
'multioutput': False,
'target_type': 'regression',
'signed': False})),
(0.200000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'gaussian_process', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'regressor:gaussian_process:alpha': 0.037731974209709904, 'regressor:gaussian_process:thetaL': 5.002213042554931e-07, 'regressor:gaussian_process:thetaU': 22409.945864393645},
(0.220000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'ard_regression', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:ard_regression:alpha_1': 0.0003701926442639788, 'regressor:ard_regression:alpha_2': 2.2118001735899097e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 1.2037591637980971e-06, 'regressor:ard_regression:lambda_2': 4.358378124977852e-09, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 1136.5286041327277, 'regressor:ard_regression:tol': 0.021944240404849075},
dataset_properties={
'task': 4,
'sparse': False,
'multioutput': False,
'target_type': 'regression',
'signed': False})),
(0.160000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'ard_regression', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:ard_regression:alpha_1': 0.0003701926442639788, 'regressor:ard_regression:alpha_2': 2.2118001735899097e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 1.2037591637980971e-06, 'regressor:ard_regression:lambda_2': 4.358378124977852e-09, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 1136.5286041327277, 'regressor:ard_regression:tol': 0.021944240404849075},
(0.020000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_regression', 'regressor:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.019566163649872924, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7200608810425068, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.22968043330398744, 'feature_preprocessor:select_rates_regression:alpha': 0.18539282936320728, 'feature_preprocessor:select_rates_regression:mode': 'fwe', 'feature_preprocessor:select_rates_regression:score_func': 'f_regression', 'regressor:extra_trees:bootstrap': 'False', 'regressor:extra_trees:criterion': 'mae', 'regressor:extra_trees:max_depth': 'None', 'regressor:extra_trees:max_features': 0.9029989558220115, 'regressor:extra_trees:max_leaf_nodes': 'None', 'regressor:extra_trees:min_impurity_decrease': 0.0, 'regressor:extra_trees:min_samples_leaf': 1, 'regressor:extra_trees:min_samples_split': 2, 'regressor:extra_trees:min_weight_fraction_leaf': 0.0},
dataset_properties={
'task': 4,
'sparse': False,
Expand Down Expand Up @@ -178,15 +178,15 @@ Get the Score of the final ensemble

.. code-block:: none
R2 score: 0.904046583977308
R2 score: 0.9018056173149241
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 1 minutes 56.775 seconds)
**Total running time of the script:** ( 1 minutes 58.065 seconds)


.. _sphx_glr_download_examples_20_basic_example_regression.py:
Expand Down
8 changes: 4 additions & 4 deletions master/_sources/examples/20_basic/sg_execution_times.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,12 @@

Computation times
=================
**04:08.861** total execution time for **examples_20_basic** files:
**04:19.705** total execution time for **examples_20_basic** files:

+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 01:56.890 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:03.547 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:56.775 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:58.065 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:15.196 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:18.094 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ Get the Score of the final ensemble
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 1 minutes 57.927 seconds)
**Total running time of the script:** ( 1 minutes 57.514 seconds)


.. _sphx_glr_download_examples_40_advanced_example_calc_multiple_metrics.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ Get the Score of the final ensemble
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 12.632 seconds)
**Total running time of the script:** ( 0 minutes 16.211 seconds)


.. _sphx_glr_download_examples_40_advanced_example_feature_types.py:
Expand Down
Loading

0 comments on commit ec1008e

Please sign in to comment.