Skip to content

Commit

Permalink
Lukas Strack: Change treatment of generic column type object (#1415)
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed Mar 15, 2022
1 parent 74f2694 commit c1510bd
Show file tree
Hide file tree
Showing 69 changed files with 3,243 additions and 3,063 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_003.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_regression_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_regression_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
364 changes: 188 additions & 176 deletions development/_sources/examples/20_basic/example_classification.rst.txt

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ View the models found by auto-sklearn
rank ensemble_weight type cost duration
model_id
2 1 1.0 random_forest 0.447294 4.123396
2 1 1.0 random_forest 0.447294 3.062512
Expand Down Expand Up @@ -183,11 +183,11 @@ Print the final ensemble constructed by auto-sklearn
.. code-block:: none
{ 2: { 'balancing': Balancing(random_state=1),
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fccc250c400>,
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f14c2a60850>,
'cost': 0.4472941828699525,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fccc64a19d0>,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f14c2a60700>,
'ensemble_weight': 1.0,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fccc250ca90>,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f14c29e8d90>,
'model_id': 2,
'rank': 1,
'sklearn_classifier': RandomForestClassifier(max_features=15, n_estimators=512, n_jobs=1,
Expand Down Expand Up @@ -264,7 +264,7 @@ Get the Score of the final ensemble
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 25.450 seconds)
**Total running time of the script:** ( 0 minutes 28.536 seconds)


.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,9 +123,10 @@ View the models found by auto-sklearn

.. code-block:: none
rank ensemble_weight type cost duration
model_id
17 1 1.0 gaussian_process 0.000635 2.055573
rank ensemble_weight type cost duration
model_id
2 1 0.86 random_forest 0.146273 2.060702
14 2 0.14 random_forest 0.272872 1.570336
Expand All @@ -152,17 +153,25 @@ Print the final ensemble constructed by auto-sklearn

.. code-block:: none
{ 17: { 'cost': 0.0006351259927256381,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fccc4f581c0>,
'ensemble_weight': 1.0,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fccc5243100>,
'model_id': 17,
'rank': 1,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fccc9b3a4f0>,
'sklearn_regressor': GaussianProcessRegressor(alpha=0.01360809010989745,
kernel=RBF(length_scale=[1, 1, 1, 1, 1]),
n_restarts_optimizer=10, normalize_y=True,
random_state=1)}}
{ 2: { 'cost': 0.14627256489466145,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f14c2a546d0>,
'ensemble_weight': 0.86,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f14c167d640>,
'model_id': 2,
'rank': 1,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f14c167dee0>,
'sklearn_regressor': RandomForestRegressor(max_features=1.0, n_estimators=512, n_jobs=1,
random_state=1, warm_start=True)},
14: { 'cost': 0.2728716376042456,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f14c1a812b0>,
'ensemble_weight': 0.14,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f14bf25cfa0>,
'model_id': 14,
'rank': 2,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f14c3aa06d0>,
'sklearn_regressor': RandomForestRegressor(criterion='friedman_mse', max_features=0.8784959154058796,
min_samples_leaf=7, min_samples_split=3, n_estimators=512,
n_jobs=1, random_state=1, warm_start=True)}}
Expand Down Expand Up @@ -190,7 +199,7 @@ Get the Score of the final ensemble

.. code-block:: none
R2 score: 0.9994868491377081
R2 score: 0.8344553031938005
Expand Down Expand Up @@ -443,7 +452,7 @@ Get the configuration space
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 2 minutes 3.311 seconds)
**Total running time of the script:** ( 2 minutes 0.675 seconds)


.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:
Expand Down
74 changes: 43 additions & 31 deletions development/_sources/examples/20_basic/example_regression.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -128,9 +128,10 @@ View the models found by auto-sklearn
rank ensemble_weight type cost duration
model_id
25 1 0.30 sgd 0.436679 0.800863
33 2 0.36 liblinear_svr 0.443974 0.801987
6 3 0.34 ard_regression 0.455042 0.850376
31 1 0.48 ard_regression 0.428169 0.928177
25 2 0.26 sgd 0.436679 0.658780
33 3 0.20 liblinear_svr 0.472547 0.763788
29 4 0.06 ard_regression 0.493390 0.648472
Expand All @@ -157,39 +158,50 @@ Print the final ensemble constructed by auto-sklearn

.. code-block:: none
{ 6: { 'cost': 0.4550418898836528,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fccc66baf10>,
'ensemble_weight': 0.34,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fccc51d33d0>,
'model_id': 6,
'rank': 3,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fccc29c6e50>,
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
copy_X=False, lambda_1=1.2037591637980971e-06,
lambda_2=4.358378124977852e-09,
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
25: { 'cost': 0.43667876507897496,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fccc51ed460>,
'ensemble_weight': 0.3,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fccc9cb62b0>,
{ 25: { 'cost': 0.43667876507897496,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f14c1a47250>,
'ensemble_weight': 0.26,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f14c167de80>,
'model_id': 25,
'rank': 1,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fccc9cb6670>,
'rank': 2,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f14c167d640>,
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
power_t=0.21521743568582094, random_state=1,
tol=0.002431731981071206, warm_start=True)},
33: { 'cost': 0.44397426747343005,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fccc51edf70>,
'ensemble_weight': 0.36,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fccc4c4ce50>,
29: { 'cost': 0.49338956176198634,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f14c1a6cf40>,
'ensemble_weight': 0.06,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f14c3bd0ac0>,
'model_id': 29,
'rank': 4,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f14c3bd00a0>,
'sklearn_regressor': ARDRegression(alpha_1=0.0003658795897322683, alpha_2=8.92755085837738e-05,
copy_X=False, lambda_1=2.7018753584355872e-06,
lambda_2=1.345477555564763e-07,
threshold_lambda=28013.994606205768, tol=0.00033715305179437166)},
31: { 'cost': 0.428169158594341,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f14c188b850>,
'ensemble_weight': 0.48,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f14c17e7f70>,
'model_id': 31,
'rank': 1,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f14c17e7d90>,
'sklearn_regressor': ARDRegression(alpha_1=0.0008154544266182765, alpha_2=5.59538372768849e-10,
copy_X=False, lambda_1=0.0006960494791085091,
lambda_2=0.00035440029631338203,
threshold_lambda=6133.542143966113, tol=0.004462344005356406)},
33: { 'cost': 0.4725467145542245,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f14c2abd160>,
'ensemble_weight': 0.2,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f14c15b6520>,
'model_id': 33,
'rank': 2,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fccc4c4c4f0>,
'sklearn_regressor': LinearSVR(C=2.4238675236172087, dual=False, epsilon=0.007260829311745733,
'rank': 3,
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f14bf1f9dc0>,
'sklearn_regressor': LinearSVR(C=71.4085586379967, dual=False, epsilon=0.03951022702573597,
loss='squared_epsilon_insensitive', random_state=1,
tol=0.00523281845966111)}}
tol=0.006317097934562396)}}
Expand Down Expand Up @@ -223,8 +235,8 @@ predicting the data mean has an R2 score of 0.

.. code-block:: none
Train R2 score: 0.5730992444209256
Test R2 score: 0.40603183069422977
Train R2 score: 0.5922043282790412
Test R2 score: 0.4073119977311549
Expand Down Expand Up @@ -269,7 +281,7 @@ the true value).

.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 1 minutes 58.538 seconds)
**Total running time of the script:** ( 1 minutes 59.102 seconds)


.. _sphx_glr_download_examples_20_basic_example_regression.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,14 +5,14 @@

Computation times
=================
**06:27.803** total execution time for **examples_20_basic** files:
**06:38.123** total execution time for **examples_20_basic** files:

+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 02:03.311 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:09.811 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:00.504 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 02:00.675 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:58.538 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:59.102 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:25.450 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:28.536 | 0.0 MB |
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
Loading

0 comments on commit c1510bd

Please sign in to comment.