Skip to content

Commit

Permalink
Francisco Rivera Valverde: Missing params in signature (#1084)
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed Feb 24, 2021
1 parent 64405e1 commit 2c3d8d9
Show file tree
Hide file tree
Showing 53 changed files with 493 additions and 465 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
42 changes: 29 additions & 13 deletions development/_modules/autosklearn/experimental/askl2.html
Original file line number Diff line number Diff line change
Expand Up @@ -137,15 +137,16 @@ <h1>Source code for autosklearn.experimental.askl2</h1><div class="highlight"><p
<span class="n">m</span> <span class="o">=</span> <span class="n">hashlib</span><span class="o">.</span><span class="n">md5</span><span class="p">()</span>
<span class="n">m</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">fh</span><span class="o">.</span><span class="n">read</span><span class="p">()</span><span class="o">.</span><span class="n">encode</span><span class="p">(</span><span class="s1">&#39;utf8&#39;</span><span class="p">))</span>
<span class="n">training_data_hash</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">hexdigest</span><span class="p">()[:</span><span class="mi">10</span><span class="p">]</span>
<span class="n">sklearn_version</span> <span class="o">=</span> <span class="n">sklearn</span><span class="o">.</span><span class="n">__version__</span>
<span class="n">autosklearn_version</span> <span class="o">=</span> <span class="n">autosklearn</span><span class="o">.</span><span class="n">__version__</span>
<span class="n">selector_file</span> <span class="o">=</span> <span class="n">pathlib</span><span class="o">.</span><span class="n">Path</span><span class="p">(</span>
<span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;XDG_CACHE_HOME&#39;</span><span class="p">,</span>
<span class="s1">&#39;~/.cache/auto-sklearn/askl2_selector_</span><span class="si">%s</span><span class="s1">_</span><span class="si">%s</span><span class="s1">_</span><span class="si">%s</span><span class="s1">.pkl&#39;</span>
<span class="o">%</span> <span class="p">(</span><span class="n">autosklearn_version</span><span class="p">,</span> <span class="n">sklearn_version</span><span class="p">,</span> <span class="n">training_data_hash</span><span class="p">),</span>
<span class="p">)</span>
<span class="p">)</span><span class="o">.</span><span class="n">expanduser</span><span class="p">()</span>
<span class="n">selector_filename</span> <span class="o">=</span> <span class="s2">&quot;askl2_selector_</span><span class="si">%s</span><span class="s2">_</span><span class="si">%s</span><span class="s2">_</span><span class="si">%s</span><span class="s2">.pkl&quot;</span> <span class="o">%</span> <span class="p">(</span>
<span class="n">autosklearn</span><span class="o">.</span><span class="n">__version__</span><span class="p">,</span>
<span class="n">sklearn</span><span class="o">.</span><span class="n">__version__</span><span class="p">,</span>
<span class="n">training_data_hash</span>
<span class="p">)</span>
<span class="n">selector_directory</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;XDG_CACHE_HOME&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">selector_directory</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">selector_directory</span> <span class="o">=</span> <span class="n">pathlib</span><span class="o">.</span><span class="n">Path</span><span class="o">.</span><span class="n">home</span><span class="p">()</span>
<span class="n">selector_directory</span> <span class="o">=</span> <span class="n">pathlib</span><span class="o">.</span><span class="n">Path</span><span class="p">(</span><span class="n">selector_directory</span><span class="p">)</span><span class="o">.</span><span class="n">joinpath</span><span class="p">(</span><span class="s1">&#39;auto-sklearn&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">expanduser</span><span class="p">()</span>
<span class="n">selector_file</span> <span class="o">=</span> <span class="n">selector_directory</span> <span class="o">/</span> <span class="n">selector_filename</span>
<span class="n">metafeatures</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">training_data</span><span class="p">[</span><span class="s1">&#39;metafeatures&#39;</span><span class="p">])</span>
<span class="n">y_values</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">training_data</span><span class="p">[</span><span class="s1">&#39;y_values&#39;</span><span class="p">])</span>
<span class="n">strategies</span> <span class="o">=</span> <span class="n">training_data</span><span class="p">[</span><span class="s1">&#39;strategies&#39;</span><span class="p">]</span>
Expand All @@ -165,8 +166,14 @@ <h1>Source code for autosklearn.experimental.askl2</h1><div class="highlight"><p
<span class="n">maxima</span><span class="o">=</span><span class="n">maxima_for_methods</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">selector_file</span><span class="o">.</span><span class="n">parent</span><span class="o">.</span><span class="n">mkdir</span><span class="p">(</span><span class="n">exist_ok</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">parents</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">selector_file</span><span class="p">,</span> <span class="s1">&#39;wb&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">fh</span><span class="p">:</span>
<span class="n">pickle</span><span class="o">.</span><span class="n">dump</span><span class="p">(</span><span class="n">selector</span><span class="p">,</span> <span class="n">fh</span><span class="p">)</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">selector_file</span><span class="p">,</span> <span class="s1">&#39;wb&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">fh</span><span class="p">:</span>
<span class="n">pickle</span><span class="o">.</span><span class="n">dump</span><span class="p">(</span><span class="n">selector</span><span class="p">,</span> <span class="n">fh</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;AutoSklearn2Classifier needs to create a selector file under &quot;</span>
<span class="s2">&quot;the user&#39;s home directory or XDG_CACHE_HOME. Nevertheless &quot;</span>
<span class="s2">&quot;the path </span><span class="si">{}</span><span class="s2"> is not writable.&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">selector_file</span><span class="p">))</span>
<span class="k">raise</span> <span class="n">e</span>


<span class="k">class</span> <span class="nc">SmacObjectCallback</span><span class="p">:</span>
Expand Down Expand Up @@ -268,6 +275,7 @@ <h1>Source code for autosklearn.experimental.askl2</h1><div class="highlight"><p
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">time_left_for_this_task</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">3600</span><span class="p">,</span>
<span class="n">per_run_time_limit</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">ensemble_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span>
<span class="n">ensemble_nbest</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span>
<span class="n">max_models_on_disc</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span>
Expand Down Expand Up @@ -295,6 +303,13 @@ <h1>Source code for autosklearn.experimental.askl2</h1><div class="highlight"><p
<span class="sd"> models. By increasing this value, *auto-sklearn* has a higher</span>
<span class="sd"> chance of finding better models.</span>

<span class="sd"> per_run_time_limit : int, optional (default=1/10 of time_left_for_this_task)</span>
<span class="sd"> Time limit for a single call to the machine learning model.</span>
<span class="sd"> Model fitting will be terminated if the machine learning</span>
<span class="sd"> algorithm runs over the time limit. Set this value high enough so</span>
<span class="sd"> that typical machine learning algorithms can be fit on the</span>
<span class="sd"> training data.</span>

<span class="sd"> ensemble_size : int, optional (default=50)</span>
<span class="sd"> Number of models added to the ensemble built by *Ensemble</span>
<span class="sd"> selection from libraries of models*. Models are drawn with</span>
Expand Down Expand Up @@ -367,7 +382,7 @@ <h1>Source code for autosklearn.experimental.askl2</h1><div class="highlight"><p

<span class="sd"> smac_scenario_args : dict, optional (None)</span>
<span class="sd"> Additional arguments inserted into the scenario of SMAC. See the</span>
<span class="sd"> `SMAC documentation </span>
<span class="sd"> `SMAC documentation</span>
<span class="sd"> &lt;https://automl.github.io/SMAC3/master/options.html?highlight=scenario</span>
<span class="sd"> #scenario&gt;`_</span>
<span class="sd"> for a list of available arguments.</span>
Expand All @@ -384,7 +399,7 @@ <h1>Source code for autosklearn.experimental.askl2</h1><div class="highlight"><p
<span class="sd"> If None is provided, a default metric is selected depending on the task.</span>

<span class="sd"> scoring_functions : List[Scorer], optional (None)</span>
<span class="sd"> List of scorers which will be calculated for each pipeline and results will be </span>
<span class="sd"> List of scorers which will be calculated for each pipeline and results will be</span>
<span class="sd"> available via ``cv_results``</span>

<span class="sd"> load_models : bool, optional (True)</span>
Expand All @@ -407,6 +422,7 @@ <h1>Source code for autosklearn.experimental.askl2</h1><div class="highlight"><p
<span class="n">include_preprocessors</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;no_preprocessing&quot;</span><span class="p">]</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span>
<span class="n">time_left_for_this_task</span><span class="o">=</span><span class="n">time_left_for_this_task</span><span class="p">,</span>
<span class="n">per_run_time_limit</span><span class="o">=</span><span class="n">per_run_time_limit</span><span class="p">,</span>
<span class="n">initial_configurations_via_metalearning</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">ensemble_size</span><span class="o">=</span><span class="n">ensemble_size</span><span class="p">,</span>
<span class="n">ensemble_nbest</span><span class="o">=</span><span class="n">ensemble_nbest</span><span class="p">,</span>
Expand Down
Loading

0 comments on commit 2c3d8d9

Please sign in to comment.