Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generate a leaderboard for each model? #495

Open
caimiao0714 opened this issue Mar 24, 2023 · 0 comments
Open

Generate a leaderboard for each model? #495

caimiao0714 opened this issue Mar 24, 2023 · 0 comments

Comments

@caimiao0714
Copy link

This is actually a question rather than an issue. I also tried other AutoML frameworks such as AutoGluon and H2O AutoML, which both have functions producing a leader board (roc_auc, accuracy, log loss, etc.). However, I do not find an equivalent function on Auto-PyTorch in the official documentation. I wonder if such a function exit in Auto-PyTorch?

Below I'm showing examples of leaderboard in AutoGluon and H2O AutoML.

Leaderboard from AutoGluon:

                      model score_test   roc_auc  accuracy   log_loss score_val pred_time_test pred_time_val     fit_time pred_time_test_marginal pred_time_val_marginal fit_time_marginal stack_level can_infer fit_order
 1:       LightGBMXT_BAG_L1  0.7590175 0.7590175 0.9742501 -0.1082179 0.7645787     24.7286382      28.34122 1.159951e+02             24.72863817             28.3412232      1.159951e+02           1      TRUE         3
 2:     WeightedEnsemble_L2  0.7588045 0.7588045 0.9742501 -0.1082454 0.7656998    401.1412535     219.29514 2.083729e+04              0.01033139              0.2191315      1.726000e+02           2      TRUE        12
 3:  NeuralNetFastAI_BAG_L1  0.7587008 0.7587008 0.9742501 -0.1082499 0.7648229    209.7337284      72.73679 6.181634e+03            209.73372841             72.7367890      6.181634e+03           1      TRUE         9
 4:   NeuralNetTorch_BAG_L1  0.7586281 0.7586281 0.9742501 -0.1082789 0.7656290    353.2530944     174.99615 2.044177e+04            353.25309443            174.9961455      2.044177e+04           1      TRUE        10
 5:         LightGBM_BAG_L1  0.7580392 0.7580392 0.9742501 -0.1083533 0.7637019     26.2219682      18.38476 8.965047e+01             26.22196817             18.3847609      8.965047e+01           1      TRUE         4
 6:    LightGBMLarge_BAG_L1  0.7574986 0.7574986 0.9742501 -0.1084190 0.7630075     21.6558595      25.69510 1.332672e+02             21.65585947             25.6951005      1.332672e+02           1      TRUE        11
 7:   ExtraTreesGini_BAG_L1  0.7317531 0.7317531 0.9741663 -0.1527889 0.7362975      0.4827056      18.03142 8.914248e+00              0.48270559             18.0314159      8.914248e+00           1      TRUE         7
 8: RandomForestEntr_BAG_L1  0.7315053 0.7315053 0.9741607 -0.1523725 0.7367013      0.5803573      19.19548 8.536943e+00              0.58035731             19.1954811      8.536943e+00           1      TRUE         6
 9:   ExtraTreesEntr_BAG_L1  0.7313867 0.7313867 0.9741719 -0.1529712 0.7365097      0.4960597      17.40264 9.324817e+00              0.49605966             17.4026434      9.324817e+00           1      TRUE         8
10: RandomForestGini_BAG_L1  0.7313856 0.7313856 0.9741607 -0.1524167 0.7365686      0.4857991      19.06845 8.353514e+00              0.48579907             19.0684481      8.353514e+00           1      TRUE         5
11:   KNeighborsDist_BAG_L1  0.5295357 0.5295357 0.9742501 -0.7495739 0.5245484    404.8888049     490.56608 5.202553e-01            404.88880491            490.5660815      5.202553e-01           1      TRUE         2
12:   KNeighborsUnif_BAG_L1  0.5295357 0.5295357 0.9742501 -0.7495739 0.5245486    421.0486317    1249.74371 5.273466e-01            421.04863167           1249.7437119      5.273466e-01           1      TRUE         1

Leaderboard from H2O AutoML:

                                                  model_id       auc   logloss     aucpr mean_per_class_error      rmse       mse training_time_ms predict_time_per_row_ms         algo
  1:        XGBoost_grid_1_AutoML_4_20230314_14900_model_2 0.6417932 0.4666353 0.3618462            0.4057249 0.3836492 0.1471867              845                0.004340      XGBoost
  2:                         GBM_2_AutoML_4_20230314_14900 0.6412184 0.4667908 0.3611882            0.4052551 0.3837011 0.1472265              602                0.017406          GBM
  3:                         GBM_3_AutoML_4_20230314_14900 0.6411061 0.4669249 0.3608521            0.4050711 0.3837799 0.1472870              613                0.012203          GBM
  4:                     XGBoost_3_AutoML_4_20230314_14900 0.6406661 0.4669883 0.3610508            0.4064628 0.3837821 0.1472887              986                0.003698      XGBoost
  5:            GBM_grid_1_AutoML_4_20230314_14900_model_6 0.6406521 0.4670791 0.3608027            0.4064283 0.3838409 0.1473338              627                0.011967          GBM
 ---                                                                                                                                                                                   
239: DeepLearning_grid_1_AutoML_4_20230314_14900_model_177 0.4058350 2.4122755 0.1671561            0.5000000 0.4448776 0.1979161            28876                0.006443 DeepLearning
240:  DeepLearning_grid_1_AutoML_4_20230314_14900_model_75 0.3926166 2.2398423 0.1600879            0.5000000 0.4448339 0.1978772            36780                0.007232 DeepLearning
241: DeepLearning_grid_1_AutoML_4_20230314_14900_model_191 0.3900886 3.0261471 0.1664013            0.5000000 0.4447404 0.1977940            71510                0.006048 DeepLearning
242: DeepLearning_grid_1_AutoML_4_20230314_14900_model_127 0.3887585 4.0422234 0.1596719            0.5000000 0.4448826 0.1979205            37300                0.006333 DeepLearning
243: DeepLearning_grid_1_AutoML_4_20230314_14900_model_173 0.3759081 2.3878755 0.1563064            0.5000000 0.4448267 0.1978708            33531                0.005443 DeepLearning
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant