Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Colgen algorithm style, params & tests #193

Merged
merged 12 commits into from
Oct 1, 2019
200 changes: 101 additions & 99 deletions src/algorithms/colgen.jl
Original file line number Diff line number Diff line change
@@ -1,33 +1,61 @@
Base.@kwdef struct ColumnGeneration <: AbstractAlgorithm
option::Bool = false
max_nb_iterations::Int = 1000
optimality_tol::Float64 = 1e-5
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why is this specific to colgen?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

no, but optimality_tol and feasibility_tol are also in BendersCutGen. We can let them here while #157 is open.

end

mutable struct ColumnGenTmpRecord
# Data stored while algorithm is running
mutable struct ColGenRuntimeData
incumbents::Incumbents
has_converged::Bool
is_feasible::Bool
params::ColumnGeneration
end

function ColumnGenTmpRecord(S::Type{<:AbstractObjSense}, node_inc::Incumbents)
i = Incumbents(S)
update_ip_primal_sol!(i, get_ip_primal_sol(node_inc))
return ColumnGenTmpRecord(i, false, true)
function ColGenRuntimeData(
algparams::ColumnGeneration, form::Reformulation, node::Node
)
inc = Incumbents(form.master.obj_sense)
update_ip_primal_sol!(inc, get_ip_primal_sol(node.incumbents))
return ColGenRuntimeData(inc, false, true, algparams)
end

# Data needed for another round of column generation
mutable struct ColumnGenerationRecord <: AbstractAlgorithmResult
mutable struct ColumnGenerationResult <: AbstractAlgorithmResult
incumbents::Incumbents
proven_infeasible::Bool
end

# Overload of the algorithm's prepare function
function prepare!(algo::ColumnGeneration, form, node)
function prepare!(alg::ColumnGeneration, form, node)
@logmsg LogLevel(-1) "Prepare ColumnGeneration."
return
end

function should_do_ph_1(cg_rec::ColumnGenerationRecord)
primal_lp_sol = getsol(get_lp_primal_sol(cg_rec.incumbents))
# Overload of the algorithm's run function
function run!(alg::ColumnGeneration, form::Reformulation, node::Node)
@logmsg LogLevel(-1) "Run ColumnGeneration."
algdata = ColGenRuntimeData(alg, form, node)
result = cg_main_loop(algdata, form, 2)
if should_do_ph_1(result)
record!(form, node)
set_ph_one(form.master)
result = cg_main_loop(algdata, form, 1)
end
if result.proven_infeasible
result.incumbents = Incumbents(getsense(result.incumbents))
end
if result.proven_infeasible
@logmsg LogLevel(-1) "ColumnGeneration terminated with status INFEASIBLE."
else
@logmsg LogLevel(-1) "ColumnGeneration terminated with status FEASIBLE."
end
update!(node.incumbents, result.incumbents)
return result
end

# Internal methods to the column generation
function should_do_ph_1(result::ColumnGenerationResult)
primal_lp_sol = getsol(get_lp_primal_sol(result.incumbents))
art_vars = filter(x->(getduty(x) isa ArtificialDuty), primal_lp_sol)
if !isempty(art_vars)
@logmsg LogLevel(-2) "Artificial variables in lp solution, need to do phase one"
Expand All @@ -45,63 +73,37 @@ function set_ph_one(master::Formulation)
return
end

function run!(algo::ColumnGeneration, form, node)
@logmsg LogLevel(-1) "Run ColumnGeneration."
algdata = ColumnGenTmpRecord(form.master.obj_sense, node.incumbents)
cg_rec = cg_main_loop(algdata, form, 2)
if should_do_ph_1(cg_rec)
record!(form, node)
set_ph_one(form.master)
cg_rec = cg_main_loop(algdata, form, 1)
end
if cg_rec.proven_infeasible
cg_rec.incumbents = Incumbents(getsense(cg_rec.incumbents))
end
if cg_rec.proven_infeasible
@logmsg LogLevel(-1) "ColumnGeneration terminated with status INFEASIBLE."
else
@logmsg LogLevel(-1) "ColumnGeneration terminated with status FEASIBLE."
end
update!(node.incumbents, cg_rec.incumbents)
return cg_rec
end

# Internal methods to the column generation
function update_pricing_problem!(spform::Formulation, dual_sol::DualSolution)

masterform = spform.parent_formulation

masterform = getmaster(spform)
for (var_id, var) in Iterators.filter(_active_pricing_sp_var_ , getvars(spform))
setcurcost!(spform, var, computereducedcost(masterform, var_id, dual_sol))
end

return false
end

function update_pricing_target!(spform::Formulation)
# println("pricing target will only be needed after automating convexity constraints")
end

function insert_cols_in_master!(masterform::Formulation,
spform::Formulation,
sp_sols::Vector{PrimalSolution{S}}) where {S}

function insert_cols_in_master!(
masterform::Formulation, spform::Formulation,
spsols::Vector{PrimalSolution{S}}
) where {S}
sp_uid = getuid(spform)
nb_of_gen_col = 0

for sp_sol in sp_sols
if contrib_improves_mlp(getbound(sp_sol))
for spsol in spsols
if contrib_improves_mlp(getbound(spsol))
nb_of_gen_col += 1
ref = getvarcounter(masterform) + 1
name = string("MC", sp_uid, "_", ref)
resetsolvalue!(masterform, sp_sol)
resetsolvalue!(masterform, spsol)
lb = 0.0
ub = Inf
kind = Continuous
duty = MasterCol
sense = Positive
mc = setprimaldwspsol!(
masterform, name, sp_sol, duty; lb = lb, ub = ub,
masterform, name, spsol, duty; lb = lb, ub = ub,
kind = kind, sense = sense
)
@logmsg LogLevel(-2) string("Generated column : ", name)
Expand All @@ -122,17 +124,16 @@ function insert_cols_in_master!(masterform::Formulation,
==#
end
end

return nb_of_gen_col
end

contrib_improves_mlp(sp_primal_bound::PrimalBound{MinSense}) = (sp_primal_bound < 0.0 - 1e-8)
contrib_improves_mlp(sp_primal_bound::PrimalBound{MaxSense}) = (sp_primal_bound > 0.0 + 1e-8)

function compute_pricing_db_contrib(spform::Formulation,
sp_sol_primal_bound::PrimalBound{S},
sp_lb::Float64,
sp_ub::Float64) where {S}
function compute_pricing_db_contrib(
spform::Formulation, sp_sol_primal_bound::PrimalBound{S}, sp_lb::Float64,
sp_ub::Float64
) where {S}
# Since convexity constraints are not automated and there is no stab
# the pricing_dual_bound_contrib is just the reduced cost * multiplicty
if contrib_improves_mlp(sp_sol_primal_bound)
Expand All @@ -143,12 +144,10 @@ function compute_pricing_db_contrib(spform::Formulation,
return contrib
end

function solve_sp_to_gencol!(masterform::Formulation,
spform::Formulation,
dual_sol::DualSolution,
sp_lb::Float64,
sp_ub::Float64)

function solve_sp_to_gencol!(
masterform::Formulation, spform::Formulation, dual_sol::DualSolution,
sp_lb::Float64, sp_ub::Float64
)
#flag_need_not_generate_more_col = 0 # Not used
flag_is_sp_infeasible = -1
#flag_cannot_generate_more_col = -2 # Not used
Expand Down Expand Up @@ -198,19 +197,19 @@ function solve_sp_to_gencol!(masterform::Formulation,
return insertion_status, pricing_db_contrib
end

function solve_sps_to_gencols!(reformulation::Reformulation,
dual_sol::DualSolution{S},
sp_lbs::Dict{FormId, Float64},
sp_ubs::Dict{FormId, Float64}) where {S}

function solve_sps_to_gencols!(
reform::Reformulation, dual_sol::DualSolution{S},
sp_lbs::Dict{FormId, Float64}, sp_ubs::Dict{FormId, Float64}
) where {S}
nb_new_cols = 0
dual_bound_contrib = DualBound{S}(0.0)
masterform = getmaster(reformulation)
sps = get_dw_pricing_sp(reformulation)
masterform = getmaster(reform)
sps = get_dw_pricing_sp(reform)
for spform in sps
sp_uid = getuid(spform)
gen_status, contrib = solve_sp_to_gencol!(masterform, spform, dual_sol, sp_lbs[sp_uid], sp_ubs[sp_uid])

gen_status, contrib = solve_sp_to_gencol!(
masterform, spform, dual_sol, sp_lbs[sp_uid], sp_ubs[sp_uid]
)
if gen_status > 0
nb_new_cols += gen_status
dual_bound_contrib += float(contrib)
Expand All @@ -221,15 +220,17 @@ function solve_sps_to_gencols!(reformulation::Reformulation,
return (nb_new_cols, dual_bound_contrib)
end

function compute_master_db_contrib(algdata::ColumnGenTmpRecord,
restricted_master_sol_value::PrimalBound{S}) where {S}
function compute_master_db_contrib(
algdata::ColGenRuntimeData, restricted_master_sol_value::PrimalBound{S}
) where {S}
# TODO: will change with stabilization
return DualBound{S}(restricted_master_sol_value)
end

function update_lagrangian_db!(algdata::ColumnGenTmpRecord,
restricted_master_sol_value::PrimalBound{S},
pricing_sp_dual_bound_contrib::DualBound{S}) where {S}
function update_lagrangian_db!(
algdata::ColGenRuntimeData, restricted_master_sol_value::PrimalBound{S},
pricing_sp_dual_bound_contrib::DualBound{S}
) where {S}
lagran_bnd = DualBound{S}(0.0)
lagran_bnd += compute_master_db_contrib(algdata, restricted_master_sol_value)
lagran_bnd += pricing_sp_dual_bound_contrib
Expand All @@ -245,8 +246,10 @@ function solve_restricted_master!(master::Formulation)
getprimalsols(opt_result), getdualsols(opt_result), elapsed_time)
end

function generatecolumns!(algdata::ColumnGenTmpRecord, reform::Reformulation,
master_val, dual_sol, sp_lbs, sp_ubs)
function generatecolumns!(
algdata::ColGenRuntimeData, reform::Reformulation, master_val,
dual_sol, sp_lbs, sp_ubs
)
nb_new_columns = 0
while true # TODO Replace this condition when starting implement stabilization
nb_new_col, sp_db_contrib = solve_sps_to_gencols!(reform, dual_sol, sp_lbs, sp_ubs)
Expand All @@ -264,21 +267,21 @@ end
ph_one_infeasible_db(db::DualBound{MinSense}) = getvalue(db) > (0.0 + 1e-5)
ph_one_infeasible_db(db::DualBound{MaxSense}) = getvalue(db) < (0.0 - 1e-5)

function cg_main_loop(algdata::ColumnGenTmpRecord,
reformulation::Reformulation,
phase::Int)::ColumnGenerationRecord
function cg_main_loop(
algdata::ColGenRuntimeData, reform::Reformulation, phase::Int
)::ColumnGenerationResult
nb_cg_iterations = 0
# Phase II loop: Iterate while can generate new columns and
# termination by bound does not apply
masterform = reformulation.master
masterform = reform.master
sp_lbs = Dict{FormId, Float64}()
sp_ubs = Dict{FormId, Float64}()

# collect multiplicity current bounds for each sp
for spform in reformulation.dw_pricing_subprs
for spform in reform.dw_pricing_subprs
sp_uid = getuid(spform)
lb_convexity_constr_id = reformulation.dw_pricing_sp_lb[sp_uid]
ub_convexity_constr_id = reformulation.dw_pricing_sp_ub[sp_uid]
lb_convexity_constr_id = reform.dw_pricing_sp_lb[sp_uid]
ub_convexity_constr_id = reform.dw_pricing_sp_ub[sp_uid]
sp_lbs[sp_uid] = getcurrhs(getconstr(masterform, lb_convexity_constr_id))
sp_ubs[sp_uid] = getcurrhs(getconstr(masterform, ub_convexity_constr_id))
end
Expand All @@ -290,7 +293,7 @@ function cg_main_loop(algdata::ColumnGenTmpRecord,
if (phase != 1 && (master_status == MOI.INFEASIBLE
|| master_status == MOI.INFEASIBLE_OR_UNBOUNDED))
@error "Solver returned that restricted master LP is infeasible or unbounded (status = $master_status) during phase != 1."
return ColumnGenerationRecord(algdata.incumbents, true)
return ColumnGenerationResult(algdata.incumbents, true)
end

update_lp_primal_sol!(algdata.incumbents, primal_sols[1])
Expand All @@ -306,13 +309,13 @@ function cg_main_loop(algdata::ColumnGenTmpRecord,
# generate new columns by solving the subproblems
sp_time = @elapsed begin
nb_new_col = generatecolumns!(
algdata, reformulation, master_val, dual_sols[1], sp_lbs, sp_ubs
algdata, reform, master_val, dual_sols[1], sp_lbs, sp_ubs
)
end

if nb_new_col < 0
@error "Infeasible subproblem."
return ColumnGenerationRecord(algdata.incumbents, true)
return ColumnGenerationResult(algdata.incumbents, true)
end

print_intermediate_statistics(
Expand All @@ -323,42 +326,41 @@ function cg_main_loop(algdata::ColumnGenTmpRecord,

dual_bound = get_ip_dual_bound(algdata.incumbents)
primal_bound = get_lp_primal_bound(algdata.incumbents)
cur_gap = gap(primal_bound, dual_bound)

ip_primal_bound = get_ip_primal_bound(algdata.incumbents)

if diff(dual_bound, ip_primal_bound) < -1e-6
if diff(dual_bound, ip_primal_bound) < algdata.params.optimality_tol
algdata.has_converged = false # ???
@logmsg LogLevel(1) "Dual bound reached primal bound."
return ColumnGenerationRecord(algdata.incumbents, false)
return ColumnGenerationResult(algdata.incumbents, false)
end
if phase == 1 && ph_one_infeasible_db(dual_bound)
algdata.is_feasible = false
@logmsg LogLevel(1) "Phase one determines infeasibility."
return ColumnGenerationRecord(algdata.incumbents, true)
return ColumnGenerationResult(algdata.incumbents, true)
end
if nb_new_col == 0 || cur_gap < 0.00001 #_params_.relative_optimality_tolerance
@logmsg LogLevel(1) "Column Generation Algorithm has converged." #nb_new_col cur_gap
if nb_new_col == 0 || gap(primal_bound, dual_bound) < algdata.params.optimality_tol
@logmsg LogLevel(1) "Column Generation Algorithm has converged."
algdata.has_converged = true
return ColumnGenerationRecord(algdata.incumbents, false)
return ColumnGenerationResult(algdata.incumbents, false)
end
if nb_cg_iterations > 1000 ##TDalgdata.max_nb_cg_iterations
if nb_cg_iterations > algdata.params.max_nb_iterations
@warn "Maximum number of column generation iteration is reached."
return ColumnGenerationRecord(algdata.incumbents, false)
return ColumnGenerationResult(algdata.incumbents, false)
end
end
return ColumnGenerationRecord(algdata.incumbents, false)
return ColumnGenerationResult(algdata.incumbents, false)
end

function print_intermediate_statistics(algdata::ColumnGenTmpRecord,
nb_new_col::Int,
nb_cg_iterations::Int,
mst_time::Float64, sp_time::Float64)
function print_intermediate_statistics(
algdata::ColGenRuntimeData, nb_new_col::Int, nb_cg_iterations::Int,
mst_time::Float64, sp_time::Float64
)
mlp = getvalue(get_lp_primal_bound(algdata.incumbents))
db = getvalue(get_ip_dual_bound(algdata.incumbents))
pb = getvalue(get_ip_primal_bound(algdata.incumbents))
@printf(
"<it=%i> <et=%i> <mst=%.3f> <sp=%.3f> <cols=%i> <mlp=%.4f> <DB=%.4f> <PB=%.4f>\n",
nb_cg_iterations, _elapsed_solve_time(), mst_time, sp_time, nb_new_col, mlp, db, pb
"<it=%i> <et=%i> <mst=%.3f> <sp=%.3f> <cols=%i> <mlp=%.4f> <DB=%.4f> <PB=%.4f>\n",
nb_cg_iterations, _elapsed_solve_time(), mst_time, sp_time, nb_new_col, mlp, db, pb
)
return
end
26 changes: 26 additions & 0 deletions test/full_instances_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,32 @@ function generalized_assignment_tests()
@test CLD.GeneralizedAssignment.print_and_check_sol(data, problem, x)
end

@testset "gap - ColGen max nb iterations" begin
data = CLD.GeneralizedAssignment.data("smallgap3.txt")

coluna = JuMP.with_optimizer(
Coluna.Optimizer, params = CL.Params(
global_strategy = CL.GlobalStrategy(
CL.SimpleBnP(
colgen = CL.ColumnGeneration(
max_nb_iterations = 8
)
),
CL.SimpleBranching(),
CL.DepthFirst()
)
),
default_optimizer = with_optimizer(GLPK.Optimizer)
)

problem, x, dec = CLD.GeneralizedAssignment.model(data, coluna)

JuMP.optimize!(problem)
@test abs(JuMP.objective_value(problem) - 438.0) <= 0.00001
@test MOI.get(problem.moi_backend.optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test CLD.GeneralizedAssignment.print_and_check_sol(data, problem, x)
end

@testset "gap with penalties - pure master variables" begin
data = CLD.GeneralizedAssignment.data("smallgap3.txt")

Expand Down