-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
integration test: partial solution / subsolver (#1073)
- Loading branch information
Showing
1 changed file
with
72 additions
and
105 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,105 +1,72 @@ | ||
# # We want to make sure that when we fix variables, these variables are | ||
# # removed from the subsolver and the solution returned contains the fixed | ||
# # variables and the cost of the fixed variables. | ||
# function test_fixed_variables() | ||
# env = CL.Env{ClMP.VarId}(CL.Params()) | ||
|
||
# # Create the following formulation: | ||
# # min x1 + 2x2 + 3x3 | ||
# # st. x1 + 2x2 + 3x3 >= 16 | ||
# # x1 >= 1 | ||
# # x2 >= 2 | ||
# # x3 >= 3 | ||
|
||
# form = ClMP.create_formulation!(env, ClMP.DwMaster()) | ||
# vars = Dict{String, ClMP.Variable}() | ||
# for i in 1:3 | ||
# x = ClMP.setvar!(form, "x$i", ClMP.OriginalVar; cost = i, lb = i) | ||
# vars["x$i"] = x | ||
# end | ||
|
||
# members = Dict{ClMP.VarId,Float64}( | ||
# ClMP.getid(vars["x1"]) => 1, | ||
# ClMP.getid(vars["x2"]) => 2, | ||
# ClMP.getid(vars["x3"]) => 3 | ||
# ) | ||
# c = ClMP.setconstr!(form, "c", ClMP.OriginalConstr; | ||
# rhs = 16, sense = ClMP.Greater, members = members | ||
# ) | ||
|
||
# ClMP.push_optimizer!(form, CL._optimizerbuilder(MOI._instantiate_and_check(GLPK.Optimizer))) | ||
# DynamicSparseArrays.closefillmode!(ClMP.getcoefmatrix(form)) | ||
|
||
# output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) | ||
|
||
# primal_sol = ClA.get_best_lp_primal_sol(output) | ||
# dual_sol = ClA.get_best_lp_dual_sol(output) | ||
# @test ClMP.getvalue(primal_sol) == 16 | ||
# @test ClMP.getvalue(dual_sol) == 16 | ||
# @test ClMP.getcurrhs(form, c) == 16 | ||
|
||
# # min x1 + 2x2 + x3 | ||
# # st. 2x2 + 3x3 >= 14 | ||
# # x1 == 2 | ||
# # x2 >= 2 | ||
# # x3 >= 3 | ||
# ClMP.fix!(form, vars["x1"], 2) | ||
|
||
# output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) | ||
# primal_sol = ClA.get_best_lp_primal_sol(output) | ||
# dual_sol = ClA.get_best_lp_dual_sol(output) | ||
# @test ClMP.getvalue(primal_sol) == 16 | ||
# @test ClMP.getvalue(dual_sol) == 16 | ||
# @test ClMP.getcurrhs(form, c) == 14 | ||
|
||
# # min x1 + 2x2 + x3 | ||
# # st. 3x3 >= 8 | ||
# # x1 == 2 | ||
# # x2 == 3 | ||
# # x3 >= 3 | ||
# ClMP.fix!(form, vars["x2"], 3) | ||
|
||
# output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) | ||
# primal_sol = ClA.get_best_lp_primal_sol(output) | ||
# dual_sol = ClA.get_best_lp_dual_sol(output) | ||
# @test ClMP.getvalue(primal_sol) == 17 | ||
# @test ClMP.getvalue(dual_sol) == 17 | ||
# @test ClMP.getcurrhs(form, c) == 8 | ||
|
||
# # min x1 + 2x2 + x3 | ||
# # st. 0 >= -4 | ||
# # x1 == 2 | ||
# # x2 == 3 | ||
# # x3 == 4 | ||
# ClMP.fix!(form, vars["x3"], 4) | ||
|
||
# output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) | ||
# primal_sol = ClA.get_best_lp_primal_sol(output) | ||
# dual_sol = ClA.get_best_lp_dual_sol(output) | ||
# @test ClMP.getvalue(primal_sol) == 20 | ||
# @test ClMP.getvalue(dual_sol) == 20 | ||
# @test ClMP.getcurrhs(form, c) == -4 | ||
|
||
# #@test_warn ClMP.setcurlb!(form, vars["x3"], 0) | ||
|
||
# ClMP.unfix!(form, vars["x3"]) | ||
|
||
# output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) | ||
# primal_sol = ClA.get_best_lp_primal_sol(output) | ||
# dual_sol = ClA.get_best_lp_dual_sol(output) | ||
|
||
# @test ClMP.getvalue(primal_sol) == 20 | ||
# @test ClMP.getvalue(dual_sol) == 20 | ||
# @test ClMP.getcurrhs(form, c) == 8 | ||
|
||
# ClMP.setcurlb!(form, vars["x3"], 3) | ||
# ClMP.setcurub!(form, vars["x3"], Inf) | ||
# output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) | ||
# primal_sol = ClA.get_best_lp_primal_sol(output) | ||
# dual_sol = ClA.get_best_lp_dual_sol(output) | ||
|
||
# @test ClMP.getvalue(primal_sol) == 17 | ||
# @test ClMP.getvalue(dual_sol) == 17 | ||
# @test ClMP.getcurrhs(form, c) == 8 | ||
# end | ||
# register!(integration_tests, "MOI - fixed_variables", test_fixed_variables) | ||
# # We want to make sure that when put variables in the partial solution, these variables are | ||
# # removed from the subsolver and the solution returned contains the variables in the partial solution | ||
# # variables and the cost of the partial solution. | ||
function test_fixed_variables() | ||
env = CL.Env{ClMP.VarId}(CL.Params()) | ||
|
||
# Create the following formulation: | ||
# min x1 + 2x2 + 3x3 | ||
# st. x1 + 2x2 + 3x3 >= 16 | ||
# x1 >= 1 | ||
# x2 >= 2 | ||
# x3 >= 3 | ||
|
||
form = ClMP.create_formulation!(env, ClMP.DwMaster()) | ||
vars = Dict{String, ClMP.Variable}() | ||
for i in 1:3 | ||
x = ClMP.setvar!(form, "x$i", ClMP.OriginalVar; cost = i, lb = i) | ||
vars["x$i"] = x | ||
end | ||
|
||
members = Dict{ClMP.VarId,Float64}( | ||
ClMP.getid(vars["x1"]) => 1, | ||
ClMP.getid(vars["x2"]) => 2, | ||
ClMP.getid(vars["x3"]) => 3 | ||
) | ||
c = ClMP.setconstr!(form, "c", ClMP.OriginalConstr; | ||
rhs = 16, sense = ClMP.Greater, members = members | ||
) | ||
|
||
ClMP.push_optimizer!(form, CL._optimizerbuilder(MOI._instantiate_and_check(GLPK.Optimizer))) | ||
DynamicSparseArrays.closefillmode!(ClMP.getcoefmatrix(form)) | ||
|
||
output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) | ||
|
||
primal_sol = ClA.get_best_lp_primal_sol(output) | ||
dual_sol = ClA.get_best_lp_dual_sol(output) | ||
@test ClMP.getvalue(primal_sol) == 16 | ||
@test ClMP.getvalue(dual_sol) == 16 | ||
@test ClMP.getcurrhs(form, c) == 16 | ||
|
||
@test primal_sol[ClMP.getid(vars["x1"])] == 1 | ||
@test primal_sol[ClMP.getid(vars["x2"])] == 2 | ||
@test primal_sol[ClMP.getid(vars["x3"])] ≈ 3 + 2/3 | ||
|
||
# min x1' + 2x2' + 3x3' | ||
# st. x1' + 2x2' + 3x3' >= 16 - 1 - 4 - 9 >= 2 | ||
# x1' >= 0 | ||
# x2' >= 0 | ||
# x3' >= 0 | ||
|
||
ClMP.add_to_partial_solution!(form, vars["x1"], 1) | ||
ClMP.add_to_partial_solution!(form, vars["x2"], 2) | ||
ClMP.add_to_partial_solution!(form, vars["x3"], 3) | ||
|
||
# We perform propagation by hand (the preprocessing should do it) | ||
ClMP.setcurrhs!(form, c, 2.0) | ||
ClMP.setcurlb!(form, vars["x1"], 0.0) | ||
ClMP.setcurlb!(form, vars["x2"], 0.0) | ||
ClMP.setcurlb!(form, vars["x3"], 0.0) | ||
|
||
output = ClA.run!(ClA.SolveLpForm(get_dual_sol = true), env, form, ClA.OptimizationState(form)) | ||
primal_sol = ClA.get_best_lp_primal_sol(output) | ||
dual_sol = ClA.get_best_lp_dual_sol(output) | ||
@test ClMP.getvalue(primal_sol) == 16 | ||
@test ClMP.getvalue(dual_sol) == 16 | ||
@test ClMP.getcurrhs(form, c) == 2 | ||
|
||
@test primal_sol[ClMP.getid(vars["x1"])] == 1 | ||
@test primal_sol[ClMP.getid(vars["x2"])] == 2 | ||
@test primal_sol[ClMP.getid(vars["x3"])] ≈ 3 + 2/3 | ||
end | ||
register!(integration_tests, "MOI - fixed_variables", test_fixed_variables) |