Requirements
- Clone the Repository
git clone https://github.com/aswahd/SamRadiology.git
cd sam2rad
- Set Up a Virtual Environment It’s recommended to use a virtual environment to manage dependencies.
python3 -m venv .venv
source .venv/bin/activate
- Install Dependencies
pip install -r requirements.txt
- Download Pre-trained Weights Download the pre-trained weights from the official SAM repository and place them in the weights directory:
File structure:
root
├── Train
│ ├── imgs
├── 1.png
├── 2.png
├── ...
|
│ └── gts
├── 1.png
├── 2.png
├── ...
└── Test
├── imgs
├── 1.png
├── 2.png
├── ...
└── gts
├── 1.png
├── 2.png
├── ...
Download Sample Dataset:
- Download the preprocessed data from ACDC dataset.
- Extract the data to
./datasets/ACDCPreprocessed
.
Sam2Rad supports various image encoders and mask decoders, allowing flexibility in model architecture.
Supported Image Encoders
- sam_vit_b_adapter
- sam_vit_l_adapter
- sam_vit_h_adapter
- sam_vit_b
- sam_vit_l
- sam_vit_h
- vit_tiny
- All versions of Sam2 image encoder with or without adapters
All supported image encoders are available in the sam2rad/encoders/build_encoder.py.
Supported Mask Decoders
- sam_mask_decoder
- lora_mask_decoder
- All versions of Sam2 mask decoder
All supported mask decoders are available in the sam2rad/decoders/build_decoder.py.
Prepare a configuration file for training. Here is an example configuration file for training on the ACDC dataset:
image_size: 1024
image_encoder: "sam2_tiny_hiera_adapter"
mask_decoder: "sam2_lora_mask_decoder"
sam_checkpoint: "weights/sam2_hiera_tiny.pt"
wandb_project_name: "ACDC"
dataset:
name: acdc
root: /path/to/your/dataset
image_size: 1024
split: 0.0526 # 0.0263 # training split
seed: 42
batch_size: 4
num_workers: 4
num_classes: 3
num_tokens: 10
training:
max_epochs: 200
save_path: checkpoints/ACDC
inference:
name: acdc_test
root: /path/to/your/test_data
checkpoint_path: /path/to/your/checkpoint
source .venv/bin/activate
CUDA_VISIBLE_DEVICES=0 python train.py --config /path/to/your/config.yaml
Replace /path/to/your/config.yaml
with the actual path to your configuration file.
Ensure your configuration file points to the correct checkpoint and data paths:
inference:
model_checkpoint: checkpoints/your_model_checkpoint
input_images: /path/to/your/test_images
output_dir: /path/to/save/segmentation_results
image_size: 1024
Run the evaluation script:
python -m sam2rad.evaluation.eval_bounding_box --config /path/to/your/config.yaml
python -m sam2rad.evaluation.eval_prompt_learner --config /path/to/your/config.yaml
If you use Sam2Rad in your research, please consider citing our paper:
@article{wahd2024sam2radsegmentationmodelmedical,
title={Sam2Rad: A Segmentation Model for Medical Images with Learnable Prompts},
author={Assefa Seyoum Wahd and Banafshe Felfeliyan and Yuyue Zhou and Shrimanti Ghosh and Adam McArthur and Jiechen Zhang and Jacob L. Jaremko and Abhilash Hareendranathan},
year={2024},
eprint={2409.06821},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2409.06821},
}