Skip to content

asu-cactus/DP_Dedup

Repository files navigation

This is a repository for our research paper Privacy and Accuracy-Aware Model Deduplication for Emerging Model Infrastructures.

System Requirements

The training of the ViT-large model with a big batch size 50 needs a GPU with memory size 40 GB. Inferencing with a batch size 16 will need about 11 GB GPU memory for ViT-large, 6 GB GPU memory for Roberta-base and 5 GB GPU memory for ResNet152.

The online serving experiment use an AWS c5a.xlarge instance (7.63 GB main memory, 4vCPU) with a batch size 1.

Software Installation

We used the fastDP Python package to train our DP models(available from https://github.com/awslabs/fast-differential-privacy). The deduplication and inference code also use the same dependencies.

FastDP

Here are the recommended steps to set up the environment:

  1. Use conda to create a virtual environment with Python 3.10 to be compatible with the Pytorch release. Here is an example command to create the environment named fastdp: conda create -n fastdp python=3.10
  2. Install pytorch 1.11 because versions above pytorch 1.12 can slow down the training. This is stated on the home page of its official repository. Here is an example comand to install pytorch 1.11: conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
  3. Clone the official repository and install it: python -m pip install -e ..
  4. Change opacus version to opacus==1.4.0 in requirements.txt (otherwise you may encounter a torch.func not found error.)
  5. Install the requirements with no dependencies: pip install -r requirements.txt --no-dependencies.
  6. Install timm: pip install -U timm.
  7. Install transformers: pip install -U sentence-transformers.
  8. Install sentence-transformers: pip install -U sentence-transformers.
  9. Install accelerate: pip install -U accelerate
  10. Install pandas: pip install -U pandas
  11. Install ml-swissknife: pip install -U ml-swissknife.

DP_Dedup

Clone this repository and activate the above fastdp environment.

Datasets

The steps to download the dataset are showed below. These data are used in both training and model deduplication.

For training DP models, please refer to the instructions in fastDP to set up the datasets. For model deduplication, create a folder named data in the root directory of this repo to hold datasets.

Text datasets

Download the data by wget https://nlp.cs.princeton.edu/projects/lm-bff/datasets.tar and extract the files to the data folder: tar xvf datasets.tar. We will only use the QNLI, MNLI, and SST2 datasets.

CIFAR100

The dataset can be downloaded from https://www.cs.toronto.edu/~kriz/cifar.html Unzip the downloaded file into the data folder.

CelebA

Here is the home page of the CelebA dataset: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

After click the first link under "Downloads", you will be redirected to a Google Drive, where you can download the data. Then download the followings: /home/local/ASUAD/hguan6/DP_dedup/fastdp_examples/image_classification1. The file img_align_celeba.zip in the Img folder. 2. All text files in Eval and Anno. 3. Create a folder under data named celeba and unzip the img_align_celeba.zip file into celeba and also move all text files to celeba.

Run Experiments

To run the experiments, the first thing you need is to train DP models. Next, you can run the model deduplication algorithms: GreedyN, Dynamic algorithms (DRD and DRED), and MCTS. Lastly, you can run the model online serving on a resource constraint environment, such as an AWS c5a.xlarge instance.

Train DP models

We used the example code in fastDP to train DP models: Roberta-base models on QNLI, MNLI, and SST-2; ViT models on CIFAR100 and CelebA, ResNet152 models on CelebA.

Here's an example of a bash script to the QNLI dataset

#!/bin/bash
python -m text_classification.run_wrapper \
    --model_name_or_path roberta-base \
    --physical_batch_size 16 \
    --output_dir text_classification/models/base-qnli-eps0.2 \
    --task_name qnli \
    --target_epsilon 0.2 \

To enable training five partitions of MNLI seperately, we modified the dataset.py file in examples/text_classification/src/ and run_classification.py in examples/text_classification/. You can replace these files in fastdp_examples/text_classification/ of this repository. You also need to change the part_id argument in run_classification.py to specify a partition. The choices for part_id are {0,1,2,3,4}.

To train the vision models, run the example code by specifying the model and dataset. We set mini_bs to 50 and the epochs to 5 and used the default values for other arguments.

After training DP models, make a folder named models that is in the same folder with our repository DP_Dedup. Then move the trained models to this models folder, which will be loaded by deduplication algorithm.

Dynamic algorithms

To run our dynamic algorithms, simply run python run_drd.py or python run_dred.py with a task_type. For example,

python run_drd.py --task_type text_qnli

To enable SVT, set argument extra_val_eps to a value greater than or equal to 0. You can also change the cut-off value c by setting argument max_fails to a positive integer. For example,

python run_drd.py --task_type text_qnli --extra_val_eps 0.0 --max_fails 3

You can save the final deduplicated models by enable --save_combined_storage True.

GreedyN algorithms

To run GreedyN algorithms, run python run_greedyn.py with argument every_n, which means evaluation is performed after deduplicating every n blocks. Other arguments are the same as the dynamic algorithms. For example,

python run_greedyn.py --task_type vision_vit --every_n 30

MCTS algorithms

To run MCTS algorithms, run python run_mcts.py with argument every_n. For example,

python run_mcts.py --task_type vision_vit --every_n 20

Online serving

To run online serving, you can run python run_online_serving.py with three arguments. For --load_from, you can choose from memory and disk . For --workload, you can choose from random and roundrobin. For --dataset_name, you can choose from CIFAR100, CelebA, and qnli.

Pruning and quantization

You can run pruning and quantization by setting --prune True or --quantize True. Currently, we only experimented them on ResNet152.

Evaluate original models

To evaluate the original models, you can comment or uncomment the task in evaluate_models.py and run python evaluate_models.py with the same arguments as described in the dynamic algorithms section.

Commands for reproduction

Here are the commands for reproducing the major results in our paper.

  1. Overall effectiveness (Fig. 2) To obtain the accuracy of the original models and "retrained" models, you need to first train the models with the listed epsilon values. Next choose a function call in evaluate_models.py, and run the model evaluation script:
python evaluate_models.py --task_type text_qnli
python evaluate_model.py --task_type vision_vit
python evaluate_model.py --task_type vision_resnet

To run deduplication using DRD:

python run_drd.py --task_type text_qnli
python run_drd.py --task_type text_mnli_sst2
python run_drd.py --task_type text_mnli
python run_drd.py --task_type vision_vit
python run_drd.py --task_type vision_resnet

To use DRED, just change the file name from run_drd.py to run_dred.py

  1. Overall effectiveness (Fig. 3) To run any the combinations of datasets (CIFAR100, CelebA, qnli), workload type (random, round robin), and w/wo deduplication, here is an example to run ResNet on CIFAR100 with deduplication on the random workload:
python run_online_serving.py --dataset_name CIFAR100 --workload random --load_from memory
  1. Comparison of deduplication algorithms (Tab. 2) To run MCTS:
python run_mcts.py --task_type text_qnli --every_n 20
python run_mcts.py --task_type text_qnli --every_n 30
python run_mcts.py --task_type vision_vit --every_n 20
python run_mcts.py --task_type vision_vit --every_n 30
python run_mcts.py --task_type vision_resnet --every_n 20
python run_mcts.py --task_type vision_resnet --every_n 30

To run GreedyN:

python run_greedyn.py --task_type text_qnli --every_n 10
python run_greedyn.py --task_type text_qnli --every_n 20
python run_greedyn.py --task_type text_qnli --every_n 30
python run_greedyn.py --task_type text_qnli --every_n 40

python run_greedyn.py --task_type vision_vit --every_n 10
python run_greedyn.py --task_type vision_vit --every_n 20
python run_greedyn.py --task_type vision_vit --every_n 30
python run_greedyn.py --task_type vision_vit --every_n 40

python run_greedyn.py --task_type vision_resnet --every_n 10
python run_greedyn.py --task_type vision_resnet --every_n 20
python run_greedyn.py --task_type vision_resnet --every_n 30
python run_greedyn.py --task_type vision_resnet --every_n 40

To run dynamic algorithms:

python run_drd.py --task_type text_qnli
python run_dred.py --task_type text_qnli
python run_drd.py --task_type vision_vit
python run_dred.py --task_type vision_vit
python run_drd.py --task_type vision_resnet
python run_dred.py --task_type vision_resnet
  1. Comparison of base model selection in different scenarios (Fig. 4) Single model (C1):
python run_drd.py --task_type text_qnli --dummy_base_model 0
python run_drd.py --task_type text_qnli --dummy_base_model 1
python run_drd.py --task_type text_qnli --dummy_base_model 2
python run_drd.py --task_type text_qnli --dummy_base_model 3

For DRED, just change run_drd.py to run_dred.py.

Single model (C2):

python run_drd.py --task_type vision_vit --dummy_base_model 0
python run_drd.py --task_type vision_vit --dummy_base_model 1
python run_drd.py --task_type vision_vit --dummy_base_model 2
python run_drd.py --task_type vision_vit --dummy_base_model 3

For DRED, just change run_drd.py to run_dred.py.

Single model (C3):

python run_drd.py --task_type vision_resnet --dummy_base_model 0
python run_drd.py --task_type vision_resnet --dummy_base_model 1
python run_drd.py --task_type vision_resnet --dummy_base_model 2
python run_drd.py --task_type vision_resnet --dummy_base_model 3

For DRED, just change run_drd.py to run_dred.py.

Multiple base models (C4):

python run_drd.py --task_type text_qnli --in_group_n_base 1
python run_drd.py --task_type text_qnli --in_group_n_base 2
python run_drd.py --task_type text_qnli --in_group_n_base 3
python run_drd.py --task_type text_qnli --in_group_n_base 4

For DRED, just change run_drd.py to run_dred.py.

Intra-data v.s. Inter-data

python run_drd.py --task_type text_qnli_mnli.py
python run_drd.py --task_type text_sst2_mnli.py
python run_drd.py --task_type text_mnli.py

For DRED, just change run_drd.py to run_dred.py.

  1. Deduplication using privacy data with SVT
python run_drd.py --task_type text_qnli --big_batch True --extra_val_eps 0
python run_drd.py --task_type vision_resnet --big_batch True --extra_val_eps 0

For DRED, just change run_drd.py to run_dred.py.

TODO: Note that the overall compression ratio computation can vary in different experiments. The value shown at the end of the output may not be the value in the paper.

Baseline - Dedup

The code for baseline Dedup can be found from this link: https://github.com/asu-cactus/Model_Deduplication_Train_Text_Classification_Model/tree/dp_dedup

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages