Skip to content

A library for answering questions using data you cannot see

Notifications You must be signed in to change notification settings

astralpunchstudios/PySyft

 
 

Repository files navigation


Syft + Grid
Code for computing on data
you do not own and cannot see




Syft + Grid provides secure and private Deep Learning in Python

Syft decouples private data from model training, using Federated Learning, Differential Privacy, and Encrypted Computation (like Multi-Party Computation (MPC) and Homomorphic Encryption (HE)) within the main Deep Learning frameworks like PyTorch and TensorFlow. Join the movement on Slack.


Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data without first putting it all in one (central) place.

The Syft ecosystem seeks to change this system, allowing you to write software which can compute over information you do not own on machines you do not have (total) control over. This not only includes servers in the cloud, but also personal desktops, laptops, mobile phones, websites, and edge devices. Wherever your data wants to live in your ownership, the Syft ecosystem exists to help keep it there while allowing it to be used privately for computation.

Stable Release

The current stable release is 0.6.0 which is available on:

For many use cases you can simply use:

$ pip install syft

If you are doing the Private AI Series or you are an external party developing against Syft and Grid please use the syft_0.6.0 branch.

Development Branch

This is the dev branch and to accommodate our need to experiment with new ideas and implementations we will be moving a few things around during the early stages of 0.7.0 beta. Currently the core syft library and code will remain fairly stable, while we do some much needed quality improvements and refactors to the grid codebase and its tooling for deployment and orchestration of nodes. During the process of development we will be moving examples from the /packages/syft/examples folder down to the /notebooks folder and ensuring they are working and tested with the latest dev code.

Mono Repo 🚝

This repo contains multiple sub-projects which work together.

OpenMined/PySyft
├── README.md     <-- You are here 📌
├── notebooks     <-- Notebook Examples and Tutorials
└── packages
    ├── grid      <-- Grid - A network aware, persistent & containerized node running Syft
    └── syft      <-- Syft - A package for doing remote data science on private data

Syft

To read more about what Syft is please consult the current 0.6.0 Documentation.

Grid

To read more about what Grid is please consult the old PyGrid README until we finish writing the new one.

Dev Requirements

  • docker
  • tox
  • python 3.8+

Docker

You will need docker and docker-compose to do development on the monorepo tooling.

Dev Compose File

Run the FastAPI Dev environment using:

$ cd packages/grid
$ source .env && docker compose up

Rebuilding Docker Containers

$ cd packages/grid
$ docker compose build

Tox

You will need tox to run some of our build and test tools.

$ pip install tox

List Build Commands

$ tox -l

You should see the following:

syft.jupyter
syft.lint
syft.test.fast
syft.test.libs
syft.test.security

These commands can be run like so:

$ tox -e syft.lint

Single VM Deployment

We are providing a simple way to deploy all of our stack inside a single VM so that no matter where you want to run everything you can do so easily by thinking in terms of a single machine either bare metal or VM and have it provisioned and auto updated.

To develop against this locally you will want the following:

  • vagrant
  • virtualbox
  • ansible
  • hagrid <-- in packages/hagrid

HAGrid Install

You can install HAGrid with pip:

$ pip install hagrid

MacOS Instructions

$ brew install vagrant virtualbox ansible

Hagrid the Grid deployment tool:

$ cd packages/hagrid
$ pip install -e .

Vagrant

Vagrant allows us to create and manage VMs locally for development. During the startup process of creating the VM the ansible provisioning scripts will be applied automatically to the VM. If you change the Vagrantfile which describes how the VM is defined you will need to either vagrant reload or destroy and re-create it.

Making changes to the VM state should be done through the ansible scripts so that the state of the box is idempotent and re-running the ansible provisioning scripts should always result in the same working grid node state.

To allow rapid development we mount the PySyft source repo into the VM at the path: /home/om/PySyft which is where it would be if it was cloned down on a real remote VM.

The configuration is done via a Vagrantfile which is written in ruby.

Vagrant Networking

Vagrant IP

The VM will be accessible on the IP 10.0.1.2 which is defined in the Vagrantfile.

Vagrant Landrush Plugin

The Landrush plugin for vagrant gives us an automatic dns service so we can access our local VM as though it were a real live domain on the internet.

$ vagrant plugin install landrush

With this enabled you can access the box on: http://node.openmined.grid

Starting VM

NOTE: You may need your sudo password to enable the landrush DNS entry on startup.

$ cd packages/grid
$ vagrant up --provision

Provisioning the VM

You want to do this any time you are testing out your ansible changes.

$ cd packages/grid
$ vagrant provision

If you want to do a quick deploy where you skip the system provisioning you can run:

$ ANSIBLE_ARGS='--extra-vars "deploy_only=true"' vagrant provision

Connecting to Vagrant VM

$ cd packages/grid
$ vagrant ssh

TLS and Certificates

You can enable TLS in HAGrid by passing in the --tls param:

$ hagrid launch domain to docker:8081+ --tls

This will go looking for a certificate and private key here:

packages/grid/traefik/certs/key.pem
packages/grid/traefik/certs/cert.pem

These files and their settings are defined in:

packages/grid/traefik/dynamic-configurations/certs.yaml

During development you will need to generate ones which match localhost and then enable --test mode so that these invalid self-signed certificates are accepted by various code and libraries.

First, get the tool mkcert.

MacOS

$ brew install mkcert

Generate Dev Cert

cd PySyft
export GRID=$(pwd)/packages/grid && export CAROOT=$GRID/tls && export CERTS=$GRID/traefik/certs
mkcert -cert-file="$CERTS/cert.pem" -key-file="$CERTS/key.pem" '*.openmined.grid' docker-host localhost 127.0.0.1 ::1

This will have created the certificate and private key as well as placed the root signing certificate (think fake SSL authority who can charge for SSL certs) in the following dir:

packages/grid/tls/rootCA-key.pem
packages/grid/tls/rootCA.pem

To ensure that tailscale will accept these certs we mount the file into the tailscale container like so:

version: "3.8"
services:
  tailscale:
    volumes:
      - ./tls/rootCA.pem:/usr/local/share/ca-certificates/rootCA.pem

The startup script runs update-ca-certificates so that the tailscale container is now aware of this fake authority and will accept the fake cert you have created for it.

Install Cert on Host

If you wish to visit web pages with localhost:8081 or network1.openmined.grid and have the TLS certificate warning disappear you need to install the certificate with:

$ mkcert -install

Ignoring TLS Certs

Alternatively as we do in the integration tests you can pass it as an environment variable to programming languages like Python like so:

REQUESTS_CA_BUNDLE=packages/grid/tls/rootCA.pem pytest tests/integration ...

When you do this, python will also accept these certificates in libraries like requests. Alternatively you can also tell requests to ignore invalid certificates with the verify kwarg like so:

import requests
request.get(url, verify=False)

To make this more convenient we have added an ENV called IGNORE_TLS_ERRORS which we set using the --test param in hagrid like so:

$ hagrid launch test_network_1 network to docker:9081 --tail=false --tls --test

You can check for this with sy.util.verify_tls() like so:

import requests
import syft as sy

request.get(url, verify=sy.util.verify_tls())

It is important not to run IGNORE_TLS_ERRORS=true in production.

Ports

Normally web traffic is served over port 80 for http and port 443 for https. Naturally during development we need to use multiple ports for multiple stacks and bind them to localhost and use things like docker-host to resolve this global address space from within any isolated containers. Currently what we do is if the port you supply to hagrid is 80 then we assume you are running in production and want port 443 for https. If you use any other port we will automatically find a port from 444 onwards and this port will be included in the http -> https 301 redirect in traefik proxy. Because of this most browsers and network libraries will simply follow this redirect so you can continue to use the normal http ports for everything.

Redirects

The Grid API inside Syft detects if a url and port combination provided gets redirected to https and will change the base_url which should mean that login credentials are sent over https not http where possible.

VPN

Due to the fact that TLS Certificates are only valid for domains and not IPs and the VPN is currently configured to use IPs only, we do not redirect or serve https over the VPN. The traffic being sent by wireguard over the VPN is already encrypted so there should be no need for TLS. The way this works is, when Grid is using TLS we forward external port 80 traffic to port 81 and then use this for the 301 redirect to the TLS port 443+. If traffic arrives on port 80 inside the cluster it does not get redirected which allows the VPN IPs to respond via http.

Deploying Custom Certs

To install certs via hagrid simply supply the two cert files as arguments:

$ hagrid launch domain to azure --tls --upload_tls_key=/path/to/certs/key.pem --upload_tls_cert=/path/to/certs/cert.pem

Alternatively if your machine is already setup without TLS you can simply reprovision with:

$ hagrid launch node_name domain to 123.x.x.x --tls --upload_tls_key=/path/to/certs/key.pem --upload_tls_cert=/path/to/certs/cert.pem

Deploy to Cloud

Azure Marketplace 1-click Deploy

Deploy To Azure

We also have an example Quickstart Template for use in your own automation pipelines.

Deploy from CLI to Azure

HAGrid supports creating VMs and provisioning with PyGrid directly using:

$ hagrid launch to azure

Follow the prompts and enter resource groups, size, location, auth credentials etc.

Deploy from CLI to Google Cloud Platform (GCP)

HAGrid supports creating VMs and provisioning with PyGrid directly using:

$ hagrid launch to gcp

Follow the prompts and enter project id, machine type, zone, auth credentials etc. Note Since we use the gcloud cli tool for provisioning we rely on the gcloud cli tool generated SSH keys so if you use a custom key path other than the default (~/.ssh/google_compute_engine) please specify the correct path.

HAGrid Deployment

Create a VM on your cloud provider with Ubuntu 20.04 with at least:

  • 2x CPU
  • 4gb RAM
  • 40gb HDD

Generate or supply a private key and note down the username.

Run the following:

$ hagrid launch node --type=domain --host=104.42.26.195 --username=ubuntu --key_path=~/.ssh/key.pem

Deploy vs Provision

If you want to later skip the setup process of installing packages and docker engine etc you can pass in --mode=deploy which will skip those steps.

Use a Custom PySyft Fork

If you wish to use a different fork of PySyft you can pass in --repo=The-PET-Lab-at-the-UN-PPTTT/PySyft --branch=ungp_pet_lab

Switching to the OpenMined user

$ sudo su - om

Cloud Images

We are using Packer to build cloud images in a very similar fashion to the dev Vagrant box.

To build images you will need the following:

  • packer
  • vagrant
  • virtualbox
  • ansible

MacOS Instructions

$ brew install packer vagrant virtualbox ansible

Build a Local Vagrant Box

Go to the following directory:

cd packages/grid/packer

Run:

./build_vagrant.sh

What this does is first build the base image, by downloading a Ubuntu .iso and automating an install to a virtual machine. After the base image is created, the same ansible provisioning scripts that we use in HAGrid and the Vagrant Dev environment above are run against the image and finally a few shell scripts are executed to update some Ubuntu packages and clean out a lot of unused stuff to squeeze the image size down.

To verify it worked you can start the Vagrant file like this:

cd packages/grid/packer
vagrant up

This system will start and automatically have the stack running and available on the local ip http://10.0.1.3/ you can also SSH into this box using the credentials in the Vagrantfile.

Azure Cloud Image

To create the azure cloud image you need to have the az cli tool and make sure you are authenticated.

Install the CLI tool:

$ pip install az

Authenticate your CLI tool:

$ az login

You will need to use a resource group and create a storage account within that resource group.

Create a resource group called: openmined-images

$ az group create -n openmined-images -l westus

Create an app to use within the packer file:

$ az ad sp create-for-rbac --name openmined-images > azure_vars.json

This will create a file called azure_vars.json which will look something like this:

{
  "appId": "21b92977-8ad0-467c-ae3a-47c864418126",
  "displayName": "openmined-images",
  "password": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
  "tenant": "e3f9defa-1378-49b3-aed7-3dcacb468c41"
}

You need to know your subscription_id:

$ SUBSCRIPTION_ID=$(az account show --query id | tr -d '"')

You can now build the image:

$ ./build_azure.sh ${SUBSCRIPTION_ID}

Create a Shared Image Gallery

Create a Shared image gallery within Azure.

Kubernetes

We provide an option to deploy the stack using kubernetes. To test and run this locally we use minikube and devspace.

Local Dev

  • docker
  • hyperkit
  • minikube
  • devspace
  • kubectl
  • kubectx

MacOS

Hyperkit

Ingress is not working on Mac and Docker and the issue is being tracked here: kubernetes/minikube#7332

Until then we will use the hyperkit backend.

Install hyperkit

$ brew install hyperkit

Docker

See above about using hyperkit on mac until the ingress issue is fixed.

We will be using docker however you do not need to enable kubernetes in your docker desktop app. If its enabled, disable it and click Apply & Restart.

Instead we will use minikube which will create and manage all the k8s resources we require as a normal container in docker engine.

$ brew install minikube

Minikube

minikube is a mini master k8s node that you can run on your local machine in something like docker. To use minikube you need it to be running:

$ minikube config set driver hyperkit
$ minikube start --memory 16384 --cpus 16 --disk-size=200g
$ minikube addons enable ingress

If you ever need to reset minikube you can do:

$ minikube delete --all --purge

Once minikube is running you should see the container in docker.

$ docker ps
CONTAINER ID   IMAGE                                 COMMAND                  CREATED        STATUS              PORTS                                                                                                                                  NAMES
57f73851bf08   gcr.io/k8s-minikube/kicbase:v0.0.25   "/usr/local/bin/entr…"   46 hours ago   Up About a minute   127.0.0.1:57954->22/tcp, 127.0.0.1:57955->2376/tcp, 127.0.0.1:57957->5000/tcp, 127.0.0.1:57958->8443/tcp, 127.0.0.1:57956->32443/tcp   minikube

Kubectl

kubectl is the CLI tool for kubernetes. If you have ran minikube it should have configured your kubectl to point to the local minikube cluster by default.

You should be able to run something like:

$ kubectl get all
NAME                 TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
service/kubernetes   ClusterIP   10.96.0.1    <none>        443/TCP   45h

k8s Namespaces

Think of a namespace as a grouping of resources and permissions which lets you easily create and destroy everything related to a single keyword.

$ kubectl get namespaces
NAME                   STATUS   AGE
default                Active   45h
kube-node-lease        Active   45h
kube-public            Active   45h
kube-system            Active   45h
kubernetes-dashboard   Active   45h

All k8s have a default namespace and the other ones here are from kubernetes and minikube.

We will use the namespace openmined to make it clear what belongs to the Grid stack and what is something else.

$ kubectl create namespace openmined
$ kubectl get all -n openmined
No resources found in openmined namespace.

Kubectx

kubectx is a package of other helpful utilities which can help you do things like set a default namespace.

$ brew install kubectx

Now we can use a tool like kubens to change the default namespace to openmined.

$ kubens openmined
Context "minikube" modified.
Active namespace is "openmined".

Now when we use commands without -n we get openmined by default.

$ kubectl get all
No resources found in openmined namespace.

Helm Charts

The most popular way to deploy applications to k8s is with a tool called Helm. What helm aims to do is to provide another layer of abstraction over kubernetes yaml configuration with hierarchical variables, templates and a package definition which can be hosted over HTTP allowing custom applications to depend on other prefabricated helm charts or to provide consumable packages of your code as a helm chart itself.

devspace

To make development and deployment of our kubernetes code easier we use a tool called devspace which aims to be like a hot reloading dev optimised version of docker compose but for kubernetes. https://devspace.sh/

Additionally devspace allows us to deploy using helm by auto-generating the values and charts from the devspace.yaml which means the single source of truth can be created which includes both production helm charts and kubernetes yaml configuration as well as local dev overrides.

$ brew install devspace

Deploy to local dev

First check that you have the right namespace:

$ devspace list namespaces
Name                   Default   Exists
default                false     true
kube-node-lease        false     true
kube-public            false     true
kube-system            false     true
kubernetes-dashboard   false     true
openmined              *true*      true

Now run the dev command with devspace:

To run a network with headscale VPN:

$ cd packages/grid
$ devspace dev -b -p network

To run a domain without the headscale VPN:

$ cd packages/grid
$ devspace dev -b -p domain

Connect VPN in dev

You can run the connect VPN settings using all the opened ports with:

$ cd packages/grid
$ python3 vpn/connect_vpn.py http://localhost:8088 http://localhost:8087 http://headscale:8080

Destroy the local deployment

$ devspace purge

Delete persistent volumes

The database and the VPN containers have persistent volumes. You can check them with:

$ kubectl get persistentvolumeclaim

And then delete PostgreSQL with something like:

$ kubectl delete persistentvolumeclaim app-db-data-db-0

Check which images / tags are being used

This will show all the unique images and their tags currently deployed which is useful when debugging which version is actually running in the cluster.

$ kubectl get pods --all-namespaces -o jsonpath="{.items[*].spec.containers[*].image}" | tr -s '[[:space:]]' '\n' | sort | uniq -c

Restart a container / pod / deployment

Get all the deployments

$ kubectl get deployments
NAME             READY   UP-TO-DATE   AVAILABLE   AGE
backend          1/1     1            1           18m
backend-stream   1/1     1            1           18m
backend-worker   1/1     1            1           18m
frontend         1/1     1            1           18m
queue            1/1     1            1           19m

Restart the backend-worker

$ kubectl rollout restart deployment backend-worker

Deploy to Google Kubernetes Engine (GKE)

Configure kubectl context with GKE:

$ gcloud container clusters get-credentials --region us-central1-c staging-cluster-1

Check that you have the correct context

$ kubectx

Configure your Google Container Registry (GCR):

$ gcloud auth configure-docker

Check your settings with print

$ devspace print -p domain --var=CONTAINER_REGISTRY=gcr.io/reflected-space-315806/

You should see that you are creating a domain and that the container registry variable changes the image name to:

images:
  backend:
    image: gcr.io/reflected-space-315806/openmined/grid-backend

This will tell devspace to publish to the GCR for your active GCP project.

Create the openmined namespace

$ kubectl create namespace openmined

Tell devspace to use the openmined namespace

$ devspace use namespace openmined

Deploy to GKE:

$ devspace deploy -p domain --var=CONTAINER_REGISTRY=gcr.io/reflected-space-315806/

Access a container directly:

$ devspace enter

Attach to container stdout:

$ devspace attach

Use port forwarding to access an internal service:

$ kubectl port-forward deployment/tailscale :4000

Publish

HAGrid

PyPI

To publish hagrid to pypi create a virtualenv in the /packages/hagrid directory.

$ cd packages/hagrid

Use a tool like pipenv or manually create and source like so:

$ python3 -m venv ./venv
$ source .venv/bin/activate

Install some tools:

$ pip install --upgrade bandit safety setuptools wheel twine tox

Bump the version inside /packages/hagrid/hagrid/__init__.py

Build a wheel:

$ ./build_wheel.sh

Check with twine:

$ twine check `find -L ./ -name "*.whl"`

Upload with twine:

$ twine upload dist/hagrid-x.x.x-py3-none-any.whl

Docker

$ cd packages/hagrid

Build and tag the images:

$ ./build_docker.sh

Publish to docker hub:

$ docker push openmined/hagrid:latest
$ docker push openmined/hagrid:x.x.x

Join Slack

Also, join the rapidly growing community of 12,000+ on Slack. The Slack community is very friendly and great about quickly answering questions about the use and development of PySyft!

Disclaimer

This software is in beta. Use at your own risk.

Support

For support in using this library, please join the #support Slack channel. Click here to join our Slack community!

Organizational Contributions

We are very grateful for contributions to Syft and Grid from the following organizations!

Udacity coMind Arkhn
Dropout Labs GENBU AI Bitdefender

License

Apache License 2.0


About

A library for answering questions using data you cannot see

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 59.3%
  • Python 35.0%
  • TypeScript 4.0%
  • JavaScript 1.0%
  • Shell 0.5%
  • Makefile 0.1%
  • Other 0.1%