This repo have 4 parts:
In yolov7_qat, We use TensorRT's pytorch quntization tool to Finetune training QAT yolov7 from the pre-trained weight. Finally we get the same performance of PTQ in TensorRT on Jetson OrinX. And the accuracy(mAP) of the model only dropped a little.
In tensorrt_yolov7, We provide a standalone c++ yolov7-app sample here. You can use trtexec to convert FP32 onnx models or QAT-int8 models exported from repo yolov7_qat to trt-engines. And set the trt-engine as yolov7-app's input. It can do detections on images/videos. Or test mAP on COCO dataset.
In deepstream_yolo, This sample shows how to integrate YOLO models with customized output layer parsing for detected objects with DeepStreamSDK.
In tensorrt_yolov4, This sample shows a standalone tensorrt-sample for yolov4.
For YoloV7 sample:
Below table shows the end-to-end performance of processing 1080p videos with this sample application.
-
Testing Device :
-
Jetson AGX Orin 64GB(PowerMode:MAXN + GPU-freq:1.3GHz + CPU:12-core-2.2GHz)
-
Tesla T4
-
Device | precision | Number of streams |
Batch Size | trtexec FPS | deepstream-app FPS with cuda-post-process |
deepstream-app FPS with cpu-post-process |
---|---|---|---|---|---|---|
OrinX | fp16 | 1 | 1 | 126 | 124 | 120 |
OrinX | fp16 | 16 | 16 | 162 | 145 | 135 |
OrinX | int8(PTQ/QAT) | 1 | 1 | 180 | 175 | 128 |
OrinX | int8(PTQ/QAT) | 16 | 16 | 264 | 264 | 135 |
T4 | fp16 | 1 | 1 | 132 | 125 | 123 |
T4 | fp16 | 16 | 16 | 169 | 169 | 123 |
T4 | int8(PTQ/QAT) | 1 | 1 | 208 | 170 | 127 |
T4 | int8(PTQ/QAT) | 16 | 16 | 305 | 300 | 132 |
- note: trtexec cudaGraph not enabled as deepstream not support cudaGraph
├── deepstream_yolo
│ ├── config_infer_primary_yoloV4.txt # config file for yolov4 model
│ ├── config_infer_primary_yoloV7.txt # config file for yolov7 model
│ ├── deepstream_app_config_yolo.txt # deepStream reference app configuration file for using YOLOv models as the primary detector.
│ ├── labels.txt # labels for coco detection # output layer parsing function for detected objects for the Yolo model.
│ ├── nvdsinfer_custom_impl_Yolo
│ │ ├── Makefile
│ │ └── nvdsparsebbox_Yolo.cpp
│ └── README.md
├── README.md
├── tensorrt_yolov4
│ ├── data
│ │ ├── demo.jpg # the demo image
│ │ └── demo_out.jpg # image detection output of the demo image
│ ├── Makefile
│ ├── Makefile.config
│ ├── README.md
│ └── source
│ ├── generate_coco_image_list.py # python script to get list of image names from MS COCO annotation or information file
│ ├── main.cpp # program main entrance where parameters are configured here
│ ├── Makefile
│ ├── onnx_add_nms_plugin.py # python script to add BatchedNMSPlugin node into ONNX model
│ ├── SampleYolo.cpp # yolov4 inference class functions definition file
│ └── SampleYolo.hpp # yolov4 inference class definition file
├── tensorrt_yolov7
│ ├── CMakeLists.txt
│ ├── imgs # the demo images
│ │ ├── horses.jpg
│ │ └── zidane.jpg
│ ├── README.md
│ ├── samples
│ │ ├── detect.cpp # detection app for images detection
│ │ ├── validate_coco.cpp # validate coco dataset app
│ │ └── video_detect.cpp # detection app for video detection
│ ├── src
│ │ ├── argsParser.cpp # argsParser helper class for commandline parsing
│ │ ├── argsParser.h # argsParser helper class for commandline parsing
│ │ ├── tools.h # helper function for yolov7 class
│ │ ├── Yolov7.cpp # Class Yolov7
│ │ └── Yolov7.h # Class Yolov7
│ └── test_coco_map.py # tool for test coco map with json file
└── yolov7_qat
├── doc
│ ├── Guidance_of_QAT_performance_optimization.md # guidance for Q&DQ insert and placement for pytorch-quantization tool
├── quantization
│ ├── quantize.py # helper class for quantize yolov7 model
│ └── rules.py # rules for Q&DQ nodes insert and restrictions
├── README.md
└── scripts
├── detect-trt.py # detect a image with tensorrt engine
├── draw-engine.py # draw tensorrt engine to graph
├── eval-trt.py # the script for evalating tensorrt mAP
├── eval-trt.sh # the command lne script for evaluating tensorrt mAP
├── qat.py # main function for QAT and PTQ
└── trt-int8.py # tensorrt build-in calibration