Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relax][PyTorch] Cleanup binary op converters #17366

Merged
merged 2 commits into from
Sep 12, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
146 changes: 49 additions & 97 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
# pylint: disable=import-outside-toplevel
"""PyTorch FX frontend of Relax."""
from typing import Callable, Dict, List, Optional, Tuple, Union
from functools import reduce
from functools import partial, reduce

import tvm
from tvm import relax
Expand Down Expand Up @@ -119,23 +119,6 @@ def _retrieve_args(self, node):
else:
return node

@staticmethod
def _promote_binary_op_args(lhs, rhs):
if isinstance(lhs, relax.Expr) and isinstance(rhs, relax.Expr):
return lhs, rhs
elif isinstance(lhs, relax.Expr):
assert isinstance(lhs.struct_info, relax.TensorStructInfo)
return lhs, relax.const(rhs, lhs.struct_info.dtype)
elif isinstance(rhs, relax.Expr):
assert isinstance(rhs.struct_info, relax.TensorStructInfo)
return relax.const(lhs, rhs.struct_info.dtype), rhs
else:
assert False

def _call_binary_op(self, op, lhs, rhs):
lhs, rhs = TorchFXImporter._promote_binary_op_args(lhs, rhs)
return self.block_builder.emit(op(lhs, rhs))

########## Unary Ops ##########

def _unary_op(self, op: Callable) -> Callable:
Expand Down Expand Up @@ -240,66 +223,38 @@ def convert(node: fx.Node) -> relax.Var:

return convert

########## Arithmetic ##########
########## Binary Ops ##########

def _add(self, node: fx.Node) -> relax.Expr:
lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return self._call_binary_op(relax.op.add, lhs, rhs)
elif isinstance(lhs, relax.expr.Constant):
return self._call_binary_op(
relax.op.add, lhs, relax.const(rhs, dtype=lhs.struct_info.dtype)
)
elif isinstance(rhs, relax.expr.Constant):
return self._call_binary_op(
relax.op.add, relax.const(lhs, dtype=rhs.struct_info.dtype), rhs
)
return lhs + rhs

def _max(self, node: fx.Node) -> relax.Expr:
lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return self._call_binary_op(relax.op.maximum, lhs, rhs)

def _floordiv(self, node: fx.Node) -> relax.Expr:
lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return self._call_binary_op(relax.op.floor_divide, lhs, rhs)
return lhs // rhs

def _mul(self, node: fx.Node) -> relax.Expr:
lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return self._call_binary_op(relax.op.multiply, lhs, rhs)
return lhs * rhs

def _pow(self, node: fx.Node) -> relax.Expr:
lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return self._call_binary_op(relax.op.power, lhs, rhs)
return lhs**rhs

def _sub(self, node: fx.Node) -> relax.Expr:
lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return self._call_binary_op(relax.op.subtract, lhs, rhs)
return lhs - rhs

def _truediv(self, node: fx.Node) -> relax.Expr:
lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return self._call_binary_op(relax.op.divide, lhs, rhs)
return lhs / rhs

########## Compare ##########

def _lt(self, node: fx.Node) -> relax.Expr:
lhs, rhs = self.retrieve_args(node)
return self._call_binary_op(relax.op.less, lhs, rhs)

def _eq(self, node: fx.Node) -> relax.Expr:
lhs, rhs = self.retrieve_args(node)
return self._call_binary_op(relax.op.equal, lhs, rhs)
def _binary_op(self, relax_op: Callable, intrinsic_op: Callable) -> Callable:
from torch import fx

def convert(node: fx.Node) -> relax.Var:
def promote_binary_op_args(lhs, rhs):
if isinstance(lhs, relax.Expr) and isinstance(rhs, relax.Expr):
return lhs, rhs
elif isinstance(lhs, relax.Expr):
assert isinstance(lhs.struct_info, relax.TensorStructInfo)
return lhs, relax.const(rhs, lhs.struct_info.dtype)
elif isinstance(rhs, relax.Expr):
assert isinstance(rhs.struct_info, relax.TensorStructInfo)
return relax.const(lhs, rhs.struct_info.dtype), rhs
else:
assert False

def call_binary_op(op, lhs, rhs):
lhs, rhs = promote_binary_op_args(lhs, rhs)
return self.block_builder.emit(op(lhs, rhs))

lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return call_binary_op(relax_op, lhs, rhs)
elif isinstance(lhs, relax.expr.Constant):
return call_binary_op(relax_op, lhs, relax.const(rhs, dtype=lhs.struct_info.dtype))
elif isinstance(rhs, relax.expr.Constant):
return call_binary_op(relax_op, relax.const(lhs, dtype=rhs.struct_info.dtype), rhs)
return intrinsic_op(lhs, rhs)

return convert

########## Creation ##########

Expand Down Expand Up @@ -486,14 +441,6 @@ def _to(self, node: fx.Node) -> relax.Var:
def _matmul_impl(self, a: relax.Expr, b: relax.Expr):
return self.block_builder.emit(relax.op.linear_algebra.matmul(a, b, out_dtype="float32"))

def _matmul(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
res = self._matmul_impl(
args[0],
args[1],
)
return res

def _addmm(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
y = self.env[node.args[1]]
Expand Down Expand Up @@ -1568,6 +1515,7 @@ def _getitem(self, node: fx.Node) -> relax.Var:
assert False

def create_convert_map(self):
import operator
from torch import nn
from torch import fx

Expand Down Expand Up @@ -1641,23 +1589,27 @@ def create_convert_map(self):
"triu_": self._inplace_tril_triu(relax.op.triu),
"triu": self._tril_triu(relax.op.triu),
# binary
"add": self._add,
"eq": self._eq,
"floordiv": self._floordiv,
"iadd": self._add,
"lt": self._lt,
"matmul": self._matmul,
"max": self._max,
"mul": self._mul,
"pow": self._pow,
"sub": self._sub,
"truediv": self._truediv,
"add": self._binary_op(relax.op.add, operator.add),
"eq": self._binary_op(relax.op.equal, operator.eq),
"floordiv": self._binary_op(relax.op.floor_divide, operator.floordiv),
"iadd": self._binary_op(relax.op.add, operator.add),
"lt": self._binary_op(relax.op.less, operator.lt),
"matmul": self._binary_op(
partial(relax.op.linear_algebra.matmul, out_dtype="float32"), operator.matmul
),
"max": self._binary_op(relax.op.maximum, max),
"mul": self._binary_op(relax.op.multiply, operator.mul),
"pow": self._binary_op(relax.op.power, operator.pow),
"sub": self._binary_op(relax.op.subtract, operator.sub),
"truediv": self._binary_op(relax.op.divide, operator.truediv),
# neural network
"adaptive_avg_pool2d": self._adaptive_avg_pool2d(is_module=False),
"addmm": self._addmm,
"avg_pool2d": self._avg_pool2d,
"baddbmm": self._baddbmm,
"bmm": self._matmul,
"bmm": self._binary_op(
partial(relax.op.linear_algebra.matmul, out_dtype="float32"), operator.matmul
),
"conv_transpose1d": self._conv1d_transpose_functional,
"conv_transpose2d": self._conv2d_transpose_functional,
"conv1d": self._conv1d_functional,
Expand Down
Loading