Skip to content

Commit

Permalink
fix: rolling and cum operator on multiple series (#16945)
Browse files Browse the repository at this point in the history
* fix: rolling and cum operator on multiple series

* add UT

* updates
  • Loading branch information
zhaoyongjie authored Oct 7, 2021
1 parent 6dc00b3 commit fd84614
Show file tree
Hide file tree
Showing 3 changed files with 185 additions and 9 deletions.
60 changes: 51 additions & 9 deletions superset/utils/pandas_postprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,6 +131,9 @@ def _flatten_column_after_pivot(
def validate_column_args(*argnames: str) -> Callable[..., Any]:
def wrapper(func: Callable[..., Any]) -> Callable[..., Any]:
def wrapped(df: DataFrame, **options: Any) -> Any:
if options.get("is_pivot_df"):
# skip validation when pivot Dataframe
return func(df, **options)
columns = df.columns.tolist()
for name in argnames:
if name in options and not all(
Expand Down Expand Up @@ -223,6 +226,7 @@ def pivot( # pylint: disable=too-many-arguments,too-many-locals
marginal_distributions: Optional[bool] = None,
marginal_distribution_name: Optional[str] = None,
flatten_columns: bool = True,
reset_index: bool = True,
) -> DataFrame:
"""
Perform a pivot operation on a DataFrame.
Expand All @@ -243,6 +247,7 @@ def pivot( # pylint: disable=too-many-arguments,too-many-locals
:param marginal_distribution_name: Name of row/column with marginal distribution.
Default to 'All'.
:param flatten_columns: Convert column names to strings
:param reset_index: Convert index to column
:return: A pivot table
:raises QueryObjectValidationError: If the request in incorrect
"""
Expand Down Expand Up @@ -300,7 +305,8 @@ def pivot( # pylint: disable=too-many-arguments,too-many-locals
_flatten_column_after_pivot(col, aggregates) for col in df.columns
]
# return index as regular column
df.reset_index(level=0, inplace=True)
if reset_index:
df.reset_index(level=0, inplace=True)
return df


Expand Down Expand Up @@ -343,13 +349,14 @@ def sort(df: DataFrame, columns: Dict[str, bool]) -> DataFrame:
@validate_column_args("columns")
def rolling( # pylint: disable=too-many-arguments
df: DataFrame,
columns: Dict[str, str],
rolling_type: str,
columns: Optional[Dict[str, str]] = None,
window: Optional[int] = None,
rolling_type_options: Optional[Dict[str, Any]] = None,
center: bool = False,
win_type: Optional[str] = None,
min_periods: Optional[int] = None,
is_pivot_df: bool = False,
) -> DataFrame:
"""
Apply a rolling window on the dataset. See the Pandas docs for further details:
Expand All @@ -369,11 +376,16 @@ def rolling( # pylint: disable=too-many-arguments
:param win_type: Type of window function.
:param min_periods: The minimum amount of periods required for a row to be included
in the result set.
:param is_pivot_df: Dataframe is pivoted or not
:return: DataFrame with the rolling columns
:raises QueryObjectValidationError: If the request in incorrect
"""
rolling_type_options = rolling_type_options or {}
df_rolling = df[columns.keys()]
columns = columns or {}
if is_pivot_df:
df_rolling = df
else:
df_rolling = df[columns.keys()]
kwargs: Dict[str, Union[str, int]] = {}
if window is None:
raise QueryObjectValidationError(_("Undefined window for rolling operation"))
Expand Down Expand Up @@ -405,10 +417,20 @@ def rolling( # pylint: disable=too-many-arguments
options=rolling_type_options,
)
) from ex
df = _append_columns(df, df_rolling, columns)

if is_pivot_df:
agg_in_pivot_df = df.columns.get_level_values(0).drop_duplicates().to_list()
agg: Dict[str, Dict[str, Any]] = {col: {} for col in agg_in_pivot_df}
df_rolling.columns = [
_flatten_column_after_pivot(col, agg) for col in df_rolling.columns
]
df_rolling.reset_index(level=0, inplace=True)
else:
df_rolling = _append_columns(df, df_rolling, columns)

if min_periods:
df = df[min_periods:]
return df
df_rolling = df_rolling[min_periods:]
return df_rolling


@validate_column_args("columns", "drop", "rename")
Expand Down Expand Up @@ -524,7 +546,12 @@ def compare( # pylint: disable=too-many-arguments


@validate_column_args("columns")
def cum(df: DataFrame, columns: Dict[str, str], operator: str) -> DataFrame:
def cum(
df: DataFrame,
operator: str,
columns: Optional[Dict[str, str]] = None,
is_pivot_df: bool = False,
) -> DataFrame:
"""
Calculate cumulative sum/product/min/max for select columns.
Expand All @@ -535,17 +562,32 @@ def cum(df: DataFrame, columns: Dict[str, str], operator: str) -> DataFrame:
`y2` based on cumulative values calculated from `y`, leaving the original
column `y` unchanged.
:param operator: cumulative operator, e.g. `sum`, `prod`, `min`, `max`
:param is_pivot_df: Dataframe is pivoted or not
:return: DataFrame with cumulated columns
"""
df_cum = df[columns.keys()]
columns = columns or {}
if is_pivot_df:
df_cum = df
else:
df_cum = df[columns.keys()]
operation = "cum" + operator
if operation not in ALLOWLIST_CUMULATIVE_FUNCTIONS or not hasattr(
df_cum, operation
):
raise QueryObjectValidationError(
_("Invalid cumulative operator: %(operator)s", operator=operator)
)
return _append_columns(df, getattr(df_cum, operation)(), columns)
if is_pivot_df:
df_cum = getattr(df_cum, operation)()
agg_in_pivot_df = df.columns.get_level_values(0).drop_duplicates().to_list()
agg: Dict[str, Dict[str, Any]] = {col: {} for col in agg_in_pivot_df}
df_cum.columns = [
_flatten_column_after_pivot(col, agg) for col in df_cum.columns
]
df_cum.reset_index(level=0, inplace=True)
else:
df_cum = _append_columns(df, getattr(df_cum, operation)(), columns)
return df_cum


def geohash_decode(
Expand Down
16 changes: 16 additions & 0 deletions tests/integration_tests/fixtures/dataframes.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,3 +165,19 @@
"b": [4, 3, 4.1, 3.95],
}
)

single_metric_df = DataFrame(
{
"dttm": to_datetime(["2019-01-01", "2019-01-01", "2019-01-02", "2019-01-02",]),
"country": ["UK", "US", "UK", "US"],
"sum_metric": [5, 6, 7, 8],
}
)
multiple_metrics_df = DataFrame(
{
"dttm": to_datetime(["2019-01-01", "2019-01-01", "2019-01-02", "2019-01-02",]),
"country": ["UK", "US", "UK", "US"],
"sum_metric": [5, 6, 7, 8],
"count_metric": [1, 2, 3, 4],
}
)
118 changes: 118 additions & 0 deletions tests/integration_tests/pandas_postprocessing_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,8 @@
from .base_tests import SupersetTestCase
from .fixtures.dataframes import (
categories_df,
single_metric_df,
multiple_metrics_df,
lonlat_df,
names_df,
timeseries_df,
Expand Down Expand Up @@ -305,6 +307,23 @@ def test_pivot_eliminate_cartesian_product_columns(self):
)
self.assertTrue(np.isnan(df["metric, 1, 1"][0]))

def test_pivot_without_flatten_columns_and_reset_index(self):
df = proc.pivot(
df=single_metric_df,
index=["dttm"],
columns=["country"],
aggregates={"sum_metric": {"operator": "sum"}},
flatten_columns=False,
reset_index=False,
)
# metric
# country UK US
# dttm
# 2019-01-01 5 6
# 2019-01-02 7 8
assert df.columns.to_list() == [("sum_metric", "UK"), ("sum_metric", "US")]
assert df.index.to_list() == to_datetime(["2019-01-01", "2019-01-02"]).to_list()

def test_aggregate(self):
aggregates = {
"asc sum": {"column": "asc_idx", "operator": "sum"},
Expand Down Expand Up @@ -405,6 +424,60 @@ def test_rolling(self):
window=2,
)

def test_rolling_with_pivot_df_and_single_metric(self):
pivot_df = proc.pivot(
df=single_metric_df,
index=["dttm"],
columns=["country"],
aggregates={"sum_metric": {"operator": "sum"}},
flatten_columns=False,
reset_index=False,
)
rolling_df = proc.rolling(
df=pivot_df, rolling_type="sum", window=2, min_periods=0, is_pivot_df=True,
)
# dttm UK US
# 0 2019-01-01 5 6
# 1 2019-01-02 12 14
assert rolling_df["UK"].to_list() == [5.0, 12.0]
assert rolling_df["US"].to_list() == [6.0, 14.0]
assert (
rolling_df["dttm"].to_list()
== to_datetime(["2019-01-01", "2019-01-02",]).to_list()
)

rolling_df = proc.rolling(
df=pivot_df, rolling_type="sum", window=2, min_periods=2, is_pivot_df=True,
)
assert rolling_df.empty is True

def test_rolling_with_pivot_df_and_multiple_metrics(self):
pivot_df = proc.pivot(
df=multiple_metrics_df,
index=["dttm"],
columns=["country"],
aggregates={
"sum_metric": {"operator": "sum"},
"count_metric": {"operator": "sum"},
},
flatten_columns=False,
reset_index=False,
)
rolling_df = proc.rolling(
df=pivot_df, rolling_type="sum", window=2, min_periods=0, is_pivot_df=True,
)
# dttm count_metric, UK count_metric, US sum_metric, UK sum_metric, US
# 0 2019-01-01 1.0 2.0 5.0 6.0
# 1 2019-01-02 4.0 6.0 12.0 14.0
assert rolling_df["count_metric, UK"].to_list() == [1.0, 4.0]
assert rolling_df["count_metric, US"].to_list() == [2.0, 6.0]
assert rolling_df["sum_metric, UK"].to_list() == [5.0, 12.0]
assert rolling_df["sum_metric, US"].to_list() == [6.0, 14.0]
assert (
rolling_df["dttm"].to_list()
== to_datetime(["2019-01-01", "2019-01-02",]).to_list()
)

def test_select(self):
# reorder columns
post_df = proc.select(df=timeseries_df, columns=["y", "label"])
Expand Down Expand Up @@ -557,6 +630,51 @@ def test_cum(self):
operator="abc",
)

def test_cum_with_pivot_df_and_single_metric(self):
pivot_df = proc.pivot(
df=single_metric_df,
index=["dttm"],
columns=["country"],
aggregates={"sum_metric": {"operator": "sum"}},
flatten_columns=False,
reset_index=False,
)
cum_df = proc.cum(df=pivot_df, operator="sum", is_pivot_df=True,)
# dttm UK US
# 0 2019-01-01 5 6
# 1 2019-01-02 12 14
assert cum_df["UK"].to_list() == [5.0, 12.0]
assert cum_df["US"].to_list() == [6.0, 14.0]
assert (
cum_df["dttm"].to_list()
== to_datetime(["2019-01-01", "2019-01-02",]).to_list()
)

def test_cum_with_pivot_df_and_multiple_metrics(self):
pivot_df = proc.pivot(
df=multiple_metrics_df,
index=["dttm"],
columns=["country"],
aggregates={
"sum_metric": {"operator": "sum"},
"count_metric": {"operator": "sum"},
},
flatten_columns=False,
reset_index=False,
)
cum_df = proc.cum(df=pivot_df, operator="sum", is_pivot_df=True,)
# dttm count_metric, UK count_metric, US sum_metric, UK sum_metric, US
# 0 2019-01-01 1 2 5 6
# 1 2019-01-02 4 6 12 14
assert cum_df["count_metric, UK"].to_list() == [1.0, 4.0]
assert cum_df["count_metric, US"].to_list() == [2.0, 6.0]
assert cum_df["sum_metric, UK"].to_list() == [5.0, 12.0]
assert cum_df["sum_metric, US"].to_list() == [6.0, 14.0]
assert (
cum_df["dttm"].to_list()
== to_datetime(["2019-01-01", "2019-01-02",]).to_list()
)

def test_geohash_decode(self):
# decode lon/lat from geohash
post_df = proc.geohash_decode(
Expand Down

0 comments on commit fd84614

Please sign in to comment.