Skip to content

Commit

Permalink
[SPARK-32822][SQL] Change the number of partitions to zero when a ran…
Browse files Browse the repository at this point in the history
…ge is empty with WholeStageCodegen disabled or falled back

### What changes were proposed in this pull request?

This PR changes the behavior of RangeExec with WholeStageCodegen disabled or falled back to change the number of partitions to zero when a range is empty.

In the current master, if WholeStageCodegen effects, the number of partitions of an empty range will be changed to zero.
```
spark.range(1, 1, 1, 1000).rdd.getNumPartitions
res0: Int = 0
```
But it doesn't if WholeStageCodegen is disabled or falled back.
```
spark.conf.set("spark.sql.codegen.wholeStage", false)
spark.range(1, 1, 1, 1000).rdd.getNumPartitions
res2: Int = 1000
```

### Why are the changes needed?

To archive better performance even though WholeStageCodegen disabled or falled back.

### Does this PR introduce _any_ user-facing change?

Yes. the number of partitions gotten with `getNumPartitions` for an empty range will be changed when WholeStageCodegen is disabled.

### How was this patch tested?

New test.

Closes #29681 from sarutak/zero-size-range.

Authored-by: Kousuke Saruta <[email protected]>
Signed-off-by: Takeshi Yamamuro <[email protected]>
  • Loading branch information
sarutak authored and maropu committed Sep 11, 2020
1 parent a22871f commit 5f468cc
Show file tree
Hide file tree
Showing 2 changed files with 63 additions and 49 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -371,6 +371,7 @@ case class RangeExec(range: org.apache.spark.sql.catalyst.plans.logical.Range)
val step: Long = range.step
val numSlices: Int = range.numSlices.getOrElse(sparkContext.defaultParallelism)
val numElements: BigInt = range.numElements
val isEmptyRange: Boolean = start == end || (start < end ^ 0 < step)

override val output: Seq[Attribute] = range.output

Expand All @@ -396,7 +397,7 @@ case class RangeExec(range: org.apache.spark.sql.catalyst.plans.logical.Range)
}

override def inputRDDs(): Seq[RDD[InternalRow]] = {
val rdd = if (start == end || (start < end ^ 0 < step)) {
val rdd = if (isEmptyRange) {
new EmptyRDD[InternalRow](sqlContext.sparkContext)
} else {
sqlContext.sparkContext.parallelize(0 until numSlices, numSlices).map(i => InternalRow(i))
Expand Down Expand Up @@ -562,58 +563,64 @@ case class RangeExec(range: org.apache.spark.sql.catalyst.plans.logical.Range)

protected override def doExecute(): RDD[InternalRow] = {
val numOutputRows = longMetric("numOutputRows")
sqlContext
.sparkContext
.parallelize(0 until numSlices, numSlices)
.mapPartitionsWithIndex { (i, _) =>
val partitionStart = (i * numElements) / numSlices * step + start
val partitionEnd = (((i + 1) * numElements) / numSlices) * step + start
def getSafeMargin(bi: BigInt): Long =
if (bi.isValidLong) {
bi.toLong
} else if (bi > 0) {
Long.MaxValue
} else {
Long.MinValue
}
val safePartitionStart = getSafeMargin(partitionStart)
val safePartitionEnd = getSafeMargin(partitionEnd)
val rowSize = UnsafeRow.calculateBitSetWidthInBytes(1) + LongType.defaultSize
val unsafeRow = UnsafeRow.createFromByteArray(rowSize, 1)
val taskContext = TaskContext.get()

val iter = new Iterator[InternalRow] {
private[this] var number: Long = safePartitionStart
private[this] var overflow: Boolean = false
private[this] val inputMetrics = taskContext.taskMetrics().inputMetrics

override def hasNext =
if (!overflow) {
if (step > 0) {
number < safePartitionEnd
} else {
number > safePartitionEnd
}
} else false

override def next() = {
val ret = number
number += step
if (number < ret ^ step < 0) {
// we have Long.MaxValue + Long.MaxValue < Long.MaxValue
// and Long.MinValue + Long.MinValue > Long.MinValue, so iff the step causes a step
// back, we are pretty sure that we have an overflow.
overflow = true
if (isEmptyRange) {
new EmptyRDD[InternalRow](sqlContext.sparkContext)
} else {
sqlContext
.sparkContext
.parallelize(0 until numSlices, numSlices)
.mapPartitionsWithIndex { (i, _) =>
val partitionStart = (i * numElements) / numSlices * step + start
val partitionEnd = (((i + 1) * numElements) / numSlices) * step + start

def getSafeMargin(bi: BigInt): Long =
if (bi.isValidLong) {
bi.toLong
} else if (bi > 0) {
Long.MaxValue
} else {
Long.MinValue
}

numOutputRows += 1
inputMetrics.incRecordsRead(1)
unsafeRow.setLong(0, ret)
unsafeRow
val safePartitionStart = getSafeMargin(partitionStart)
val safePartitionEnd = getSafeMargin(partitionEnd)
val rowSize = UnsafeRow.calculateBitSetWidthInBytes(1) + LongType.defaultSize
val unsafeRow = UnsafeRow.createFromByteArray(rowSize, 1)
val taskContext = TaskContext.get()

val iter = new Iterator[InternalRow] {
private[this] var number: Long = safePartitionStart
private[this] var overflow: Boolean = false
private[this] val inputMetrics = taskContext.taskMetrics().inputMetrics

override def hasNext =
if (!overflow) {
if (step > 0) {
number < safePartitionEnd
} else {
number > safePartitionEnd
}
} else false

override def next() = {
val ret = number
number += step
if (number < ret ^ step < 0) {
// we have Long.MaxValue + Long.MaxValue < Long.MaxValue
// and Long.MinValue + Long.MinValue > Long.MinValue, so iff the step causes a step
// back, we are pretty sure that we have an overflow.
overflow = true
}

numOutputRows += 1
inputMetrics.incRecordsRead(1)
unsafeRow.setLong(0, ret)
unsafeRow
}
}
new InterruptibleIterator(taskContext, iter)
}
new InterruptibleIterator(taskContext, iter)
}
}
}

override def simpleString(maxFields: Int): String = {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -994,6 +994,13 @@ class PlannerSuite extends SharedSparkSession with AdaptiveSparkPlanHelper {
}
}
}

testWithWholeStageCodegenOnAndOff("Change the number of partitions to zero " +
"when a range is empty") { _ =>
val range = spark.range(1, 1, 1, 1000)
val numPartitions = range.rdd.getNumPartitions
assert(numPartitions == 0)
}
}

// Used for unit-testing EnsureRequirements
Expand Down

0 comments on commit 5f468cc

Please sign in to comment.