Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.x] Add AWDRNN Pratrained model test #20018

Merged
merged 8 commits into from
Mar 19, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/mxnet/contrib/onnx/mx2onnx/export_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,7 @@ def export_model(sym, params, in_shapes=None, in_types=np.float32,
if not isinstance(in_types, list):
in_types = [in_types for _ in range(len(in_shapes))]
in_types_t = [mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(i_t)] for i_t in in_types]
assert len(in_types) == len(in_shapes), "The lengths of in_types and in_shapes must equal"
# if input parameters are strings(file paths), load files and create symbol parameter objects
if isinstance(sym, string_types) and isinstance(params, string_types):
logging.info("Converting json and weight file to sym and params")
Expand Down
62 changes: 62 additions & 0 deletions tests/python-pytest/onnx/test_onnxruntime.py
Original file line number Diff line number Diff line change
Expand Up @@ -869,6 +869,68 @@ def test_dynamic_shape_bert_inference_onnxruntime(tmp_path, model):
shutil.rmtree(tmp_path)


@with_seed()
@pytest.mark.parametrize('model_name', [('awd_lstm_lm_600', 600), ('awd_lstm_lm_1150', 1150)])
@pytest.mark.parametrize('seq_length', [16, 128, 256])
def test_awd_rnn_lstm_pretrained_inference_onnxruntime(tmp_path, model_name, seq_length):
try:
import gluonnlp as nlp
ctx = mx.cpu()
dataset= 'wikitext-2'
model, _ = nlp.model.get_model(
name=model_name[0],
ctx=ctx,
pretrained=True,
dataset_name=dataset,
dropout=0)
model.hybridize()

batch = 2
num_hidden = model_name[1]
num_layers = 2
inputs = mx.nd.random.randint(0, 33278, shape=(seq_length, batch),
ctx=ctx).astype('float32')
begin_state = model.begin_state(func=mx.nd.random.uniform, low=0, high=1,
batch_size=batch, dtype='float32', ctx=ctx)
out, out_state= model(inputs, begin_state)

prefix = "%s/awd_lstm" % tmp_path
model.export(prefix)
sym_file = "%s-symbol.json" % prefix
params_file = "%s-0000.params" % prefix
onnx_file = "%s.onnx" % prefix

input_shapes = [(seq_length, batch),
np.shape(begin_state[0][0]), np.shape(begin_state[0][1]),
np.shape(begin_state[1][0]), np.shape(begin_state[1][1]),
np.shape(begin_state[2][0]), np.shape(begin_state[2][1])]
input_types = [np.float32, np.float32, np.float32, np.float32, np.float32, np.float32,
np.float32]
converted_model_path = mx.contrib.onnx.export_model(sym_file, params_file, input_shapes,
input_types, onnx_file, verbose=True)

sess_options = onnxruntime.SessionOptions()
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
sess = onnxruntime.InferenceSession(onnx_file, sess_options)

in_tensors = [inputs, begin_state[0][0], begin_state[0][1],
begin_state[1][0], begin_state[1][1],
begin_state[2][0], begin_state[2][1]]
input_dict = dict((sess.get_inputs()[i].name, in_tensors[i].asnumpy()) for i in range(len(in_tensors)))
pred = sess.run(None, input_dict)

assert_almost_equal(out, pred[6])
assert_almost_equal(out_state[0][0], pred[0])
assert_almost_equal(out_state[0][1], pred[1])
assert_almost_equal(out_state[1][0], pred[2])
assert_almost_equal(out_state[1][1], pred[3])
assert_almost_equal(out_state[2][0], pred[4])
assert_almost_equal(out_state[2][1], pred[5])

finally:
shutil.rmtree(tmp_path)


@with_seed()
@pytest.mark.parametrize('model_name', ['ernie_12_768_12'])
def test_ernie_inference_onnxruntime(tmp_path, model_name):
Expand Down