Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.x] Onnx support for reshape_like #19759

Merged
merged 3 commits into from
Jan 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 101 additions & 0 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -3050,3 +3050,104 @@ def convert_contrib_AdaptiveAvgPooling2D(node, **kwargs):
make_node("GlobalAveragePool", [input_nodes[0]], [name], name=name)
]
return nodes


@mx_op.register("reshape_like")
def convert_reshape_like(node, **kwargs):
"""Map MXNet's reshape_like operator attributes to onnx's operator.
"""
from onnx.helper import make_node
name, input_nodes, attrs = get_inputs(node, kwargs)

lhs = input_nodes[0]
rhs = input_nodes[1]

lhs_begin = str(attrs.get('lhs_begin', '0'))
rhs_begin = str(attrs.get('rhs_begin', '0'))
lhs_end = str(attrs.get('lhs_end', 'None'))
rhs_end = str(attrs.get('rhs_end', 'None'))

if lhs_begin == 'None' or rhs_begin == 'None':
raise NotImplementedError("lhs_begin and rhs_begin should not be None.")

lhs_begin = int(lhs_begin)
rhs_begin = int(rhs_begin)

# basic case
if lhs_begin == 0 and lhs_end == 'None' and rhs_begin == 0 and rhs_end == 'None':
nodes = [
make_node('Shape', [rhs], [name+'_shape_rhs']),
make_node('Reshape', [lhs, name+'_shape_rhs'], [name], name=name)
]
return nodes

nodes = [
create_tensor([0], name+'_0', kwargs["initializer"]),
make_node('Shape', [lhs], [name+'_lhs_shape']),
make_node('Shape', [name+'_lhs_shape'], [name+'_lhs_dim']),
make_node('Shape', [rhs], [name+'_rhs_shape']),
make_node('Shape', [name+'_rhs_shape'], [name+'_rhs_dim']),
]

if lhs_begin >= 0:
nodes += [
create_tensor([lhs_begin], name+'_lhs_begin', kwargs["initializer"]),
]
else:
nodes += [
create_tensor([lhs_begin], name+'_lhs_begin_neg', kwargs["initializer"]),
make_node('Add', [name+'_lhs_dim', name+'_lhs_begin_neg'], [name+'_lhs_begin']),
]

if rhs_begin >= 0:
nodes += [
create_tensor([rhs_begin], name+'_rhs_begin', kwargs["initializer"]),
]
else:
nodes += [
create_tensor([rhs_begin], name+'_rhs_begin_neg', kwargs["initializer"]),
make_node('Add', [name+'_rhs_dim', name+'_rhs_begin_neg'], [name+'_rhs_begin']),
]

if lhs_end == 'None':
nodes += [
make_node('Add', [name+'_lhs_dim', name+'_0'], [name+'_lhs_end']),
]
else:
lhs_end = int(lhs_end)
if lhs_end >= 0:
nodes += [
create_tensor([lhs_end], name+'_lhs_end', kwargs["initializer"]),
]
else:
nodes += [
create_tensor([lhs_end], name+'_lhs_end_neg', kwargs["initializer"]),
make_node('Add', [name+'_lhs_dim', name+'_lhs_end_neg'], [name+'_lhs_end']),
]

if rhs_end == 'None':
nodes += [
make_node('Add', [name+'_rhs_dim', name+'_0'], [name+'_rhs_end']),
]
else:
rhs_end = int(rhs_end)
if rhs_end >= 0:
nodes += [
create_tensor([rhs_end], name+'_rhs_end', kwargs["initializer"]),
]
else:
nodes += [
create_tensor([rhs_end], name+'_rhs_end_neg', kwargs["initializer"]),
make_node('Add', [name+'_rhs_dim', name+'_rhs_end_neg'], [name+'_rhs_end']),
]

nodes += [
make_node('Slice', [name+'_lhs_shape', name+'_0', name+'_lhs_begin'], [name+'_slice0_out']),
make_node('Slice', [name+'_rhs_shape', name+'_rhs_begin', name+'_rhs_end'], [name+'_slice1_out']),
make_node('Concat', [name+'_slice0_out', name+'_slice1_out'], [name+'_concat0_out'], axis=0),
make_node('Slice', [name+'_lhs_shape', name+'_lhs_end', name+'_lhs_dim'], [name+'_slice2_out']),
make_node('Concat', [name+'_concat0_out', name+'_slice2_out'], [name+'_concat1_out'], axis=0),
make_node('Reshape', [lhs, name+'_concat1_out'], [name], name=name)
]

return nodes
18 changes: 18 additions & 0 deletions tests/python-pytest/onnx/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -434,3 +434,21 @@ def test_onnx_export_contrib_AdaptiveAvgPooling2D(tmp_path, dtype):
op_export_test('contrib_AdaptiveAvgPooling2D', M3, [x], tmp_path)
M4 = def_model('contrib.AdaptiveAvgPooling2D', output_size=[1,1])
op_export_test('contrib_AdaptiveAvgPooling2D', M4, [x], tmp_path)


@pytest.mark.parametrize('dtype', ['int32', 'int64', 'float16', 'float32', 'float64'])
def test_onnx_export_reshape_like(tmp_path, dtype):
if 'int' in dtype:
x = mx.nd.random.randint(0, 10, (2, 2, 3, 2), dtype=dtype)
y = mx.nd.random.randint(0, 10, (1, 4, 3, 2), dtype=dtype)
else:
x = mx.nd.random.normal(0, 10, (2, 2, 3, 2), dtype=dtype)
y = mx.nd.random.normal(0, 10, (1, 4, 3, 2), dtype=dtype)
M1 = def_model('reshape_like')
op_export_test('reshape_like1', M1, [x, y], tmp_path)
M2 = def_model('reshape_like', lhs_begin=0, lhs_end=2, rhs_begin=1, rhs_end=2)
op_export_test('reshape_like2', M2, [x, y], tmp_path)
M3 = def_model('reshape_like', lhs_begin=-4, lhs_end=-2, rhs_begin=-3, rhs_end=-2)
op_export_test('reshape_like3', M3, [x, y], tmp_path)
M4 = def_model('reshape_like', lhs_begin=0, lhs_end=None, rhs_begin=1, rhs_end=None)
op_export_test('reshape_like4', M4, [x, y], tmp_path)