Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add regexp_like, improve docs and examples for regexp_match` #9137

Merged
merged 8 commits into from
Feb 9, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions datafusion-examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,21 +52,22 @@ cargo run --example csv_sql
- [`dataframe_output.rs`](examples/dataframe_output.rs): Examples of methods which write data out from a DataFrame
- [`dataframe_in_memory.rs`](examples/dataframe_in_memory.rs): Run a query using a DataFrame against data in memory
- [`deserialize_to_struct.rs`](examples/deserialize_to_struct.rs): Convert query results into rust structs using serde
- [`expr_api.rs`](examples/expr_api.rs): Create, execute, simplify and anaylze `Expr`s
- [`expr_api.rs`](examples/expr_api.rs): Create, execute, simplify and analyze `Expr`s
- [`flight_sql_server.rs`](examples/flight/flight_sql_server.rs): Run DataFusion as a standalone process and execute SQL queries from JDBC clients
- [`make_date.rs`](examples/make_date.rs): Examples of using the make_date function
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you 🙏

- [`memtable.rs`](examples/memtable.rs): Create an query data in memory using SQL and `RecordBatch`es
- [`parquet_sql.rs`](examples/parquet_sql.rs): Build and run a query plan from a SQL statement against a local Parquet file
- [`parquet_sql_multiple_files.rs`](examples/parquet_sql_multiple_files.rs): Build and run a query plan from a SQL statement against multiple local Parquet files
- [`query-aws-s3.rs`](examples/external_dependency/query-aws-s3.rs): Configure `object_store` and run a query against files stored in AWS S3
- [`query-http-csv.rs`](examples/query-http-csv.rs): Configure `object_store` and run a query against files vi HTTP
- [`regexp.rs`](examples/regexp.rs): Examples of using regular expression functions
- [`rewrite_expr.rs`](examples/rewrite_expr.rs): Define and invoke a custom Query Optimizer pass
- [`to_timestamp.rs`](examples/to_timestamp.rs): Examples of using to_timestamp functions
- [`simple_udf.rs`](examples/simple_udf.rs): Define and invoke a User Defined Scalar Function (UDF)
- [`advanced_udf.rs`](examples/advanced_udf.rs): Define and invoke a more complicated User Defined Scalar Function (UDF)
- [`simple_udaf.rs`](examples/simple_udaf.rs): Define and invoke a User Defined Aggregate Function (UDAF)
- [`advanced_udaf.rs`](examples/advanced_udaf.rs): Define and invoke a more complicated User Defined Aggregate Function (UDAF)
- [`simple_udfw.rs`](examples/simple_udwf.rs): Define and invoke a User Defined Window Function (UDWF)
- [`make_date.rs`](examples/make_date.rs): Examples of using the make_date function
- [`to_timestamp.rs`](examples/to_timestamp.rs): Examples of using the to_timestamp functions
- [`advanced_udwf.rs`](examples/advanced_udwf.rs): Define and invoke a more complicated User Defined Window Function (UDWF)

## Distributed
Expand Down
300 changes: 300 additions & 0 deletions datafusion-examples/examples/regexp.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
// Licensed to the Apache Software Foundation (ASF) under one
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
Omega359 marked this conversation as resolved.
Show resolved Hide resolved
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use arrow::array::{BooleanArray, LargeStringArray, StringArray, StringBuilder};
use log::info;

use datafusion::arrow::datatypes::{DataType, Field, Schema};
use datafusion::arrow::record_batch::RecordBatch;
use datafusion::error::Result;
use datafusion::prelude::*;
use datafusion_common::assert_contains;

/// This example demonstrates how to use the regexp_*
/// functions in the DataFrame API as well as via sql.
#[tokio::main]
async fn main() -> Result<()> {
// define a schema. Regex are restricted to Utf8 and largeutf8 data
let schema = Arc::new(Schema::new(vec![
Field::new("values", DataType::Utf8, false),
Field::new("patterns", DataType::LargeUtf8, false),
Field::new("flags", DataType::Utf8, true),
]));

let mut sb = StringBuilder::new();
sb.append_value("i");
sb.append_value("i");
sb.append_value("i");
sb.append_null();
sb.append_null();
sb.append_null();
sb.append_null();
sb.append_null();
sb.append_null();
sb.append_null();
sb.append_null();

// define data for our examples
let batch = RecordBatch::try_new(
schema,
vec![
Arc::new(StringArray::from(vec![
"abc",
"ABC",
"aBc",
"AbC",
"aBC",
"4000",
"4010",
"Düsseldorf",
"Москва",
"Köln",
"إسرائيل",
])),
// the full list of supported features and
// syntax can be found at
// https://docs.rs/regex/latest/regex/#syntax

// NOTE: double slashes are required to escape the slash character
// NOTE: when not using the r"" syntax
Arc::new(LargeStringArray::from(vec![
// simple regex examples
"^(a)",
"^(A).*",
"(b|d)",
"(B|D)",
"^(b|c)",
// word boundaries, grouping, etc
r"\b4([1-9]\d\d|\d[1-9]\d|\d\d[1-9])\b",
r"\b4([1-9]\d\d|\d[1-9]\d|\d\d[1-9])\b",
// unicode is supported
r"[\p{Letter}-]+",
r"[\p{L}-]+",
"[a-zA-Z]ö[a-zA-Z]{2}",
// unicode character classes work
r"^\p{Arabic}+$",
])),
// supported flags can be found at
// https://docs.rs/regex/latest/regex/#grouping-and-flags
Arc::new(sb.finish()),
],
)?;

// declare a new context. In spark API, this corresponds to a new spark SQLsession
let ctx = SessionContext::new();

// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
ctx.register_batch("examples", batch)?;
let df = ctx.table("examples").await?;

//
//
//regexp_like examples
//
//
// regexp_like format is (regexp_replace(text, regex[, flags])
//

// use dataframe and regexp_like function to test col 'values', against patterns in col 'patterns' without flags
let df = df.with_column("a", regexp_like(vec![col("values"), col("patterns")]))?;
// use dataframe and regexp_like function to test col 'values', against patterns in col 'patterns' with flags
let df = df.with_column(
"b",
regexp_like(vec![col("values"), col("patterns"), col("flags")]),
)?;

// you can use literals as well with dataframe calls
let df = df.with_column(
"c",
regexp_like(vec![lit("foobarbequebaz"), lit("(bar)(beque)")]),
)?;

let df = df.select_columns(&["a", "b", "c"])?;

// print the results
df.show().await?;

// use sql and regexp_like function to test col 'values', against patterns in col 'patterns' without flags
let df = ctx
.sql("select regexp_like(values, patterns) from examples")
.await?;

// print the results
df.show().await?;

// use dataframe and regexp_like function to test col 'values', against patterns in col 'patterns' with flags
let df = ctx
.sql("select regexp_like(values, patterns, flags) from examples")
.await?;

// print the results
df.show().await?;

// literals work as well
// to match against the entire input use ^ and $ in the regex
let df = ctx.sql("select regexp_like('John Smith', '^.*Smith$'), regexp_like('Smith Jones', '^Smith.*$')").await?;

// print the results
df.show().await?;

// look-around and back references are not supported for performance
// reasons.
// Note that an error may not always be returned but the result
// if returned will always be false
let df = ctx.read_empty()?.with_column(
"a",
regexp_like(vec![
lit(r"(?<=[A-Z]\w* )Smith"),
lit("John Smith"),
lit("i"),
]),
)?;
let df = df.select_columns(&["a"])?;

// print the results
df.show().await?;

let result = ctx
.sql(r"select regexp_like('(?<=[A-Z]\w )Smith', 'John Smith', 'i') as a")
.await?
.collect()
.await;

let expected = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Boolean, false)])),
vec![Arc::new(BooleanArray::from(vec![false]))],
)
.unwrap();

assert!(result.is_ok());
let result = result.unwrap();

assert_eq!(result.len(), 1);
info!("{:?}", result[0]);
info!("{expected:?}");

assert_eq!(format!("{:?}", result[0]), format!("{expected:?}"));

// invalid flags will result in an error
let result = ctx
.sql(r"select regexp_like('\b4(?!000)\d\d\d\b', 4010, 'g')")
.await?
.collect()
.await;

let expected = "regexp_like() does not support the \"global\" option";
assert_contains!(result.unwrap_err().to_string(), expected);

// there is a size limit on the regex during regex compilation
let result = ctx
.sql("select regexp_like('aaaaa', 'a{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}')")
.await?
.collect()
.await;

let expected = "Regular expression did not compile: CompiledTooBig(";
assert_contains!(result.unwrap_err().to_string(), expected);

//
//
//regexp_match examples
//
//
// regexp_match format is (regexp_replace(text, regex[, flags])
//

let df = ctx.table("examples").await?;

// use dataframe and regexp_match function to test col 'values', against patterns in col 'patterns' without flags
let df = df.with_column("a", regexp_match(vec![col("values"), col("patterns")]))?;
// use dataframe and regexp_match function to test col 'values', against patterns in col 'patterns' with flags
let df = df.with_column(
"b",
regexp_match(vec![col("values"), col("patterns"), col("flags")]),
)?;

// you can use literals as well with dataframe calls
let df = df.with_column(
"c",
regexp_match(vec![lit("foobarbequebaz"), lit("(bar)(beque)")]),
)?;

let df = df.select_columns(&["a", "b", "c"])?;

// print the results
df.show().await?;

// use sql and regexp_match function to test col 'values', against patterns in col 'patterns' without flags
let df = ctx
.sql("select regexp_match(values, patterns) from examples")
.await?;

// print the results
df.show().await?;

// use dataframe and regexp_match function to test col 'values', against patterns in col 'patterns' with flags
let df = ctx
.sql("select regexp_match(values, patterns, flags) from examples")
.await?;

// print the results
df.show().await?;

// literals work as well
// to match against the entire input use ^ and $ in the regex
let df = ctx.sql("select regexp_match('John Smith', '^.*Smith$'), regexp_match('Smith Jones', '^Smith.*$')").await?;

// print the results
df.show().await?;

//
//
//regexp_replace examples
//
//
// regexp_replace format is (regexp_replace(text, regex, replace, flags)
//

// global flag example
let df = ctx
.sql("SELECT regexp_replace('foobarbaz', 'b(..)', 'X\\1Y', 'g')")
.await?;

// print the results
df.show().await?;

// without global flag
let df = ctx
.sql("SELECT regexp_replace('foobarbaz', 'b(..)', 'X\\1Y', null)")
.await?;

// print the results
df.show().await?;

// null regex means null result
let df = ctx
.sql("SELECT regexp_replace('foobarbaz', NULL, 'X\\1Y', 'g')")
.await?;

// print the results
df.show().await?;

Ok(())
}
21 changes: 21 additions & 0 deletions datafusion/core/tests/dataframe/dataframe_functions.rs
Original file line number Diff line number Diff line change
Expand Up @@ -434,6 +434,27 @@ async fn test_fn_md5() -> Result<()> {
Ok(())
}

#[tokio::test]
#[cfg(feature = "unicode_expressions")]
async fn test_fn_regexp_like() -> Result<()> {
let expr = regexp_like(vec![col("a"), lit("[a-z]")]);

let expected = [
"+-----------------------------------+",
"| regexp_like(test.a,Utf8(\"[a-z]\")) |",
"+-----------------------------------+",
"| true |",
"| true |",
"| true |",
"| true |",
"+-----------------------------------+",
];

assert_fn_batches!(expr, expected);

Ok(())
}

#[tokio::test]
#[cfg(feature = "unicode_expressions")]
async fn test_fn_regexp_match() -> Result<()> {
Expand Down
Loading
Loading