Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Incorrect results in datafusion #1441

Closed
franeklubi opened this issue Dec 13, 2021 · 27 comments
Closed

Incorrect results in datafusion #1441

franeklubi opened this issue Dec 13, 2021 · 27 comments
Labels
bug Something isn't working

Comments

@franeklubi
Copy link

franeklubi commented Dec 13, 2021

Describe the bug
I came upon a bug while querying my custom Parquet dataset, which causes DataFusion to produce incoherent and incorrect results.

I tested my dataset in various ways, all of which produced the desired results:

  • reading parquet files using python pandas, then merging and filtering the data there
  • encoding into CSV, and reading the data with DataFusion
  • creating an SQLite database using the provided CSV files, and using the same queries there

To Reproduce
Steps to reproduce the behavior:

  1. Download all the code and data I used for testing:

issue_data.zip

Inside there are the Parquet files and CSVs with exactly the same data (also, there's an sqlite database created from the provided CSV files).

  1. Use the instructions included in README.md to reproduce the issue:

The query, that fails when querying Parquet files with datafusion-cli:

-- 1. Distinct stop names
SELECT DISTINCT stop_name FROM stop INNER JOIN trip ON tid = trip_tid WHERE line = '176' ORDER BY stop_name NULLS LAST;

Change only in where from line to trip_line produces the desired results.

Expected behavior
Should produce these 27 rows:

Bartnicza
Bazyliańska
Bolesławicka
Brzezińska
Budowlana
Choszczówka
Chłodnia
Daniszewska
Fabryka Pomp
Insurekcji
Marcelin
Marywilska-Las
Ołówkowa
PKP Płudy
PKP Żerań
Parowozowa
Pelcowizna
Polnych Kwiatów
Raciborska
Rembielińska
Sadkowska
Smugowa
Starego Dębu
Zyndrama z Maszkowic
os.Marywilska
Śpiewaków
None

Query 1 from README.md (mentioned above) produces this incorrect set of 33 rows:

+----------------------+
| stop_name            |
+----------------------+
| Bartnicza            |
| Bazyliańska          |
| Bolesławicka         |
| Brzezińska           |
| Budowlana            |
| Choszczówka          |
| Chłodnia             |
| Cygańska             |
| Czołgistów           |
| Daniszewska          |
| Fabryka Pomp         |
| Insurekcji           |
| Majerankowa          |
| Marcelin             |
| Marywilska-Las       |
| Ołówkowa             |
| PKP Falenica         |
| PKP Płudy            |
| PKP Żerań            |
| Parowozowa           |
| Pelcowizna           |
| Polnych Kwiatów      |
| Raciborska           |
| Rembielińska         |
| Rokosowska           |
| Sadkowska            |
| Smugowa              |
| Starego Dębu         |
| Zbójna Góra          |
| Zyndrama z Maszkowic |
| os.Marywilska        |
| Śpiewaków            |
|                      |
+----------------------+

Additional context
Datafusion version:

$ datafusion-cli --version
DataFusion 5.1.0

My guess
Since the Parquet files have encoded NULLs, and reading the CSV files with datafusion-cli gets rid of those, my best bet is on the usage of NULLs and some weir behavior when joining.

@franeklubi franeklubi added the bug Something isn't working label Dec 13, 2021
@franeklubi
Copy link
Author

franeklubi commented Dec 13, 2021

no_nulls.zip

In the file above I removed NULLs from Parquet files (missing strings got replaced with "NULL" and ints with 0).

Querying these files produces the desired results, which further confirms my theory, that there is something wrong with NULL handling.

@jimexist jimexist changed the title Incorrect results in datafusion-cli Incorrect results in datafusion Dec 13, 2021
@jimexist
Copy link
Member

hi @franeklubi thanks for the detailed sharing.

to simplify bug reproduction, can you help me understand the difference between parquet and csv data? specifically:

❯ CREATE EXTERNAL TABLE stop STORED AS PARQUET LOCATION './parquets/stops';
0 rows in set. Query took 0.001 seconds.
❯ select count(*) from stop;
+-----------------+
| COUNT(UInt8(1)) |
+-----------------+
| 33254           |
+-----------------+
1 row in set. Query took 0.007 seconds.
❯ CREATE EXTERNAL TABLE stop (time TEXT, trip_tid TEXT, trip_line TEXT, stop_name TEXT) STORED AS CSV LOCATION './csvs/stop.csv';
0 rows in set. Query took 0.000 seconds.
❯ select count(*) from stop;
+-----------------+
| COUNT(UInt8(1)) |
+-----------------+
| 33255           |
+-----------------+
1 row in set. Query took 0.014 seconds.

they seem to have different number of rows.

Same thing applies to trips data.

@franeklubi
Copy link
Author

Hi @jimexist! Thanks for the reply

The issue results from the headers kept in the CSV files. That's my bad - please remove them before testing.

I will amend the issue info, so others won't get the same problem as you

@franeklubi
Copy link
Author

I've updated the README.md of issue_data.zip, to account for the header rows in csv files.

@jimexist
Copy link
Member

jimexist commented Dec 13, 2021

thanks for the update.

to people reading this, i'm still trying to minimize the reproduction steps, so i guess below is a simpler statement:

CREATE EXTERNAL TABLE stop_parquet STORED AS PARQUET LOCATION './parquets/stops';
CREATE EXTERNAL TABLE stop_csv (time TEXT, trip_tid TEXT, trip_line TEXT, stop_name TEXT) STORED AS CSV LOCATION './csvs/stop.csv';
❯ select distinct stop_name from stop_csv;
+------------------------------+
| stop_name                    |
+------------------------------+
| Szczęśliwice                 |
| Wawelska                     |
| Bolesławicka                 |
...
| Ceramiczna                   |
| Czołgistów                   |
+------------------------------+
134 rows in set. Query took 0.015 seconds.
❯ select distinct stop_name from stop_parquet;
+------------------------------+
| stop_name                    |
+------------------------------+
| Milenijna                    |
| Park Praski                  |
| Wolności                     |
...
| Dzika                        |
| Budowlana                    |
| PKP Płudy                    |
| Bolesławicka                 |
| Marcelin                     |
+------------------------------+
112 rows in set. Query took 0.008 seconds.

i.e. even without join, we can tell that parquet and csv reads differently.

@jimexist
Copy link
Member

jimexist commented Dec 13, 2021

thinking out loud: doing pandas validation:

In [10]: import pandas as pd

In [11]: csv_pd = pd.read_csv('./csvs/stop.csv')

In [12]: pq_pd = pd.read_parquet('./parquets/stops')

In [13]: csv_pd.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 33254 entries, 0 to 33253
Data columns (total 4 columns):
 #   Column     Non-Null Count  Dtype
---  ------     --------------  -----
 0   time       33254 non-null  object
 1   trip_tid   32113 non-null  float64
 2   trip_line  32126 non-null  object
 3   stop_name  705 non-null    object
dtypes: float64(1), object(3)
memory usage: 1.0+ MB

In [14]: pq_pd.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 33254 entries, 0 to 33253
Data columns (total 4 columns):
 #   Column     Non-Null Count  Dtype
---  ------     --------------  -----
 0   time       33254 non-null  datetime64[ns]
 1   trip_tid   32113 non-null  float64
 2   trip_line  32126 non-null  object
 3   stop_name  705 non-null    object
dtypes: datetime64[ns](1), float64(1), object(2)
memory usage: 1.0+ MB

and at least the stop_name columns are the same.

@jimexist
Copy link
Member

jimexist commented Dec 13, 2021

seems like these values are absent in parquet readings:

❯ select stop_name from stop_csv except select stop_name from stop_parquet order by stop_name;
+------------------------+
| stop_name              |
+------------------------+
|                        |
| CH Promenada           |
| Centrum                |
| Ciołkosza              |
| Kanał Gocławski        |
| Marszałkowska          |
| Marysin                |
| Metro Politechnika     |
| Metro Świętokrzyska    |
| Odkryta                |
| Okularowa              |
| Poligonowa             |
| Przyczółek Grochowski  |
| Rezedowa               |
| Rozbrat                |
| Saska                  |
| Zajezdnia Ostrobramska |
| Zamieniecka            |
| pl.Bankowy             |
| pl.Konstytucji         |
| pl.Na Rozdrożu         |
| stop_name              |
| Łysakowska             |
+------------------------+
23 rows in set. Query took 0.019 seconds.

and the scanning process was invalid:

❯ select distinct stop_name from stop_parquet where stop_name = 'Odkryta';
+-----------+
| stop_name |
+-----------+
| Odkryta   |
+-----------+
1 row in set. Query took 0.007 seconds.

notice the Odkryta row would be missing in the statement below.

❯ select distinct stop_name from stop_parquet;
+------------------------------+
| stop_name                    |
+------------------------------+
|                              |
| Bystra                       |
| Dobosza                      |
| Urbanistów                   |
| Pelcowizna                   |
| PUSTELNIK                    |
| Strzeleckiego                |
| Bełdan                       |
| Kijowska                     |
| Świątynia Opatrzności Bożej  |
| Białołęka-Ratusz             |
| Armatnia                     |
| Muranowska                   |
| Rokosowska                   |
| Choszczówka                  |
| os.Marywilska                |
| Metro Stokłosy               |
| Leśnej Polanki               |
| Ćwiklińskiej                 |
| Nowodwory                    |
| Stawki                       |
| PKP Falenica                 |
| Bazyliańska                  |
| Bartnicza                    |
| ARMATNIA                     |
| Metro Ratusz-Arsenał         |
| Ćmielowska                   |
| Myśliborska                  |
| Oś Królewska                 |
| RONDO ZESŁAŃCÓW SYBERYJSKICH |
| pl.Inwalidów                 |
| Opaczewska                   |
| Rudzka                       |
| Nowolipie                    |
| Polnych Kwiatów              |
| PKP Żerań                    |
| Sarmacka                     |
| rondo Zesłańców Syberyjskich |
| Leszno                       |
| Gorzykowska                  |
| Miła                         |
| pl.Narutowicza               |
| pl.Zawiszy                   |
| Majerankowa                  |
| Daniszewska                  |
| PKP Olszynka Grochowska      |
| Stare Miasto                 |
| Cm.Wolski                    |
| Metro Stadion Narodowy       |
| Małych Dębów                 |
| Marywilska-Las               |
| Powsinek                     |
| Branickiego                  |
| Vogla                        |
| Olesin                       |
| Ceramiczna                   |
| CH Marki                     |
| Dw.Wileński                  |
| Hala Kopińska                |
| Inflancka                    |
| Klaudyny                     |
| Chłodna                      |
| Zbójna Góra                  |
| Czołgistów                   |
| Sadkowska                    |
| Insurekcji                   |
| Brzezińska                   |
| Ołówkowa                     |
| Smugowa                      |
| Dąbrówka Wiślana             |
| Żerań FSO                    |
| Kino Femina                  |
| gen.Zajączka                 |
| Wola-Ratusz                  |
| Bohomolca                    |
| Chłodnia                     |
| Starego Dębu                 |
| Raciborska                   |
| Rembielińska                 |
| Wałbrzyska-Cmentarz          |
| EC Żerań                     |
| os.Potok                     |
| Metro Księcia Janusza        |
| Dw.Gdański                   |
| Mennica                      |
| Norblin                      |
| Sienna                       |
| Gwiaździsta                  |
| Sobocka                      |
| Marymont-Potok               |
| Śpiewaków                    |
| Fabryka Pomp                 |
| METRO RATUSZ-ARSENAŁ         |
| Osiedle                      |
| Szczęśliwice                 |
| Szwedzka                     |
| pl.Starynkiewicza            |
| Wawelska                     |
| Dzika                        |
| Budowlana                    |
| PKP Płudy                    |
| Bolesławicka                 |
| Marcelin                     |
| Milenijna                    |
| Park Praski                  |
| Wolności                     |
| Smocza                       |
| pl.Wilsona                   |
| Cygańska                     |
| Parowozowa                   |
| Zyndrama z Maszkowic         |
| Parafialna                   |
+------------------------------+
112 rows in set. Query took 0.008 seconds.

Given the investigation above I believe this might be related to the single distinct to group by optimization or the hash aggregation steps.

cc @Dandandan @houqp

@alamb
Copy link
Contributor

alamb commented Dec 15, 2021

I'll try and check this out in more detail tomorrow. Thanks for the investigation @jimexist

@alamb
Copy link
Contributor

alamb commented Dec 16, 2021

I spent some time looking at the parquet data and the csv data, and it looks to me like there may be something wrong with the parquet reader.

Specifically, I just ran a query that did a select *

dump_parquet.sql:

CREATE EXTERNAL TABLE stops_parquet
STORED AS PARQUET
LOCATION '/Users/alamb/Documents/Wrong-answer-datafusion-1141/issue_data/parquets/stops';

show columns from stops_parquet;

CREATE EXTERNAL TABLE trips_parquet
STORED AS PARQUET
LOCATION '/Users/alamb/Documents/Wrong-answer-datafusion-1141/issue_data/parquets/trips';

show columns from trips_parquet;

select * from stops_parquet order by time, trip_tid, trip_line, stop_name;
select * from trips_parquet order by tid, line, base_day;

and dump_csv.sql:

CREATE EXTERNAL TABLE stops_csv (time timestamp, trip_tid bigint, trip_line TEXT, stop_name TEXT)
STORED AS CSV WITH HEADER ROW
LOCATION '/Users/alamb/Documents/Wrong-answer-datafusion-1141/issue_data/csvs/stop.csv';

show columns from stops_csv;

CREATE EXTERNAL TABLE trips_csv (tid bigint, line TEXT, base_day date)
STORED AS CSV WITH HEADER ROW
LOCATION '/Users/alamb/Documents/Wrong-answer-datafusion-1141/issue_data/csvs/trip.csv';

show columns from trips_csv;

select * from stops_csv order by time, trip_tid, trip_line, stop_name;
select * from trips_csv order by tid, line, base_day;

Like this:

~/Software/arrow-datafusion/target/debug/datafusion-cli -f dump_csv.sql  > dump_csv.txt
~/Software/arrow-datafusion/target/debug/datafusion-cli -f dump_parquet.sql  > dump_parquet.txt

The results are here:
dump_csv.txt
dump_parquet.txt

And a quick visual diff shows they aren't the same

The first few lines of dump_csv.txt look like

+---------------------+----------+-----------+------------------------------+
| time                | trip_tid | trip_line | stop_name                    |
+---------------------+----------+-----------+------------------------------+
| 2021-11-15 05:00:00 | 54761677 | N64       |                              |
| 2021-11-15 05:00:00 | 54778942 | 204       |                              |
| 2021-11-15 05:00:00 | 54788307 | 186       | RONDO ZESŁAŃCÓW SYBERYJSKICH |
| 2021-11-15 05:00:00 | 54788967 | N41       |                              |
| 2021-11-15 05:00:00 | 54788988 | N41       |                              |
| 2021-11-15 05:00:00 | 54802937 | 104       |                              |

While the first few lines of dump_parquet.txt l look like:

+---------------------+----------+-----------+------------------------------+
| time                | trip_tid | trip_line | stop_name                    |
+---------------------+----------+-----------+------------------------------+
| 2021-11-15 00:00:00 | 54761677 | N64       |                              |
| 2021-11-15 00:00:00 | 54778942 | 204       |                              |
| 2021-11-15 00:00:00 | 54788307 | 186       | Armatnia                     |
| 2021-11-15 00:00:00 | 54788967 | N41       |                              |
| 2021-11-15 00:00:00 | 54788988 | N41       |                              |
| 2021-11-15 00:00:00 | 54802937 | 104       |                              |

(note that the stop name is different)

However, when I look for that mismatched line trip_tid=54788307 in the data using pandas it does match with the csv:

Here is the raw data in csv:

$ grep 54788307 issue_data/csvs/stop.csv
2021-11-15 00:00:00,54788307,186,RONDO ZESŁAŃCÓW SYBERYJSKICH

Here is what comes out when using pandas:

Python 3.8.12 (default, Oct 13 2021, 06:42:42) 
[Clang 13.0.0 (clang-1300.0.29.3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas as pd
import pandas as pd
>>> df = pd.read_parquet('issue_data/parquets/stops/2021-11.parquet')
df = pd.read_parquet('issue_data/parquets/stops/2021-11.parquet')
>>> df.to_csv('/tmp/2021-11.csv')
df.to_csv('/tmp/2021-11.csv')
>>> 
$ grep 54788307 /tmp/2021-11.csv 
16591,2021-11-15 00:00:00,54788307.0,186,RONDO ZESŁAŃCÓW SYBERYJSKICH

@alamb
Copy link
Contributor

alamb commented Dec 16, 2021

Oh weird, but then a direct query

select * from stops_parquet where trip_tid=54788307;
+---------------------+----------+-----------+------------------------------+
| time                | trip_tid | trip_line | stop_name                    |
+---------------------+----------+-----------+------------------------------+
| 2021-11-15 00:00:00 | 54788307 | 186       | RONDO ZESŁAŃCÓW SYBERYJSKICH |
+---------------------+----------+-----------+------------------------------+

Seems to get the correct answer 🤔

@alamb
Copy link
Contributor

alamb commented Dec 17, 2021

When I just do select * the answer is not correct either:

select * from stops_parquet;
+---------------------+----------+-----------+------------------------------+
| time                | trip_tid | trip_line | stop_name                    |
+---------------------+----------+-----------+------------------------------+
...
| 2021-11-15 00:00:00 | 54788307 | 186       | Armatnia                     |
...
+---------------------+----------+-----------+------------------------------+
33254 rows in set. Query took 1.553 seconds.

@alamb
Copy link
Contributor

alamb commented Dec 17, 2021

I have a smaller reproducer and am trying to narrow down where the problem is but probably won't be able to work on this until next week sometime at the earliest

In case anyone else is interested, here is the repo: repro.zip

cargo run --bin datafusion-cli -- -f repro.sql | grep 54788307

It should print out

| 2021-11-15 00:00:00 | 54788307 | 186       | RONDO ZESŁAŃCÓW SYBERYJSKICH |

But actually prints out

| 2021-11-15 00:00:00 | 54788307 | 186       | Armatnia

@alamb
Copy link
Contributor

alamb commented Dec 22, 2021

I plan to focus on this issue tomorrow

@Dandandan
Copy link
Contributor

A guess: it might be an issue with reading statistics / predicate push down?

@alamb
Copy link
Contributor

alamb commented Dec 23, 2021

The plot thickens! 🕵️

Regarding parquet predicate pruning, amusingly in this case, I think row group pruning actually helps avoid the problem. As you may recall, when a filter is applied like this

select * from stops_parquet where trip_tid=54788307;

The answer is correct (stop_name is "RONDO ZESŁAŃCÓW SYBERYJSKICH"):

+---------------------+----------+-----------+------------------------------+
| time                | trip_tid | trip_line | stop_name                    |
+---------------------+----------+-----------+------------------------------+
| 2021-11-15 00:00:00 | 54788307 | 186       | RONDO ZESŁAŃCÓW SYBERYJSKICH |
+---------------------+----------+-----------+------------------------------+

However, when I disable pruning then the wrong answer comes out!

+---------------------+----------+-----------+-----------+
| time                | trip_tid | trip_line | stop_name |
+---------------------+----------+-----------+-----------+
| 2021-11-15 00:00:00 | 54788307 | 186       | Armatnia  |
+---------------------+----------+-----------+-----------+

I added some debugging, and verified that the query does in fact skip several row groups:

Row Group[0], col  ReportStopRecord: pruned = true
Row Group[1], col  ReportStopRecord: pruned = false
Row Group[2], col  ReportStopRecord: pruned = false
Row Group[3], col  ReportStopRecord: pruned = false
Row Group[4], col  ReportStopRecord: pruned = false
Row Group[5], col  ReportStopRecord: pruned = false
Row Group[6], col  ReportStopRecord: pruned = false
Row Group[7], col  ReportStopRecord: pruned = false
Row Group[8], col  ReportStopRecord: pruned = false
Row Group[9], col  ReportStopRecord: pruned = true
Row Group[10], col  ReportStopRecord: pruned = false
Row Group[11], col  ReportStopRecord: pruned = false
Row Group[12], col  ReportStopRecord: pruned = false
Row Group[13], col  ReportStopRecord: pruned = false
Row Group[14], col  ReportStopRecord: pruned = false
Row Group[15], col  ReportStopRecord: pruned = false
Row Group[16], col  ReportStopRecord: pruned = false
Row Group[17], col  ReportStopRecord: pruned = false
Row Group[18], col  ReportStopRecord: pruned = false
Row Group[19], col  ReportStopRecord: pruned = false
Row Group[20], col  ReportStopRecord: pruned = false
Row Group[21], col  ReportStopRecord: pruned = false
Row Group[22], col  ReportStopRecord: pruned = false
Row Group[23], col  ReportStopRecord: pruned = false
Row Group[24], col  ReportStopRecord: pruned = false
Row Group[25], col  ReportStopRecord: pruned = false
Row Group[26], col  ReportStopRecord: pruned = false
Row Group[27], col  ReportStopRecord: pruned = false
Row Group[28], col  ReportStopRecord: pruned = false
Row Group[29], col  ReportStopRecord: pruned = false
Row Group[30], col  ReportStopRecord: pruned = false
Row Group[31], col  ReportStopRecord: pruned = false
Row Group[32], col  ReportStopRecord: pruned = true
Row Group[33], col  ReportStopRecord: pruned = false
Row Group[34], col  ReportStopRecord: pruned = true

@alamb
Copy link
Contributor

alamb commented Dec 23, 2021

Cross referencing the data output from pandas and the parquer reader,
Here are the rows from pandas and arrow/parquet that have non null values for stop_name:

Pandas:

1523,2021-11-15 02:40:32,54827807,102,PUSTELNIK
2475,2021-11-15 04:54:14,54807500,102,PKP Olszynka Grochowska
6218,2021-11-15 10:25:27,54802989,104,Żerań FSO
7286,2021-11-15 04:29:31,54787914,140,METRO RATUSZ-ARSENAŁ
7431,2021-11-15 08:23:38,54793831,157,Rokosowska
7433,2021-11-15 10:08:11,54793833,157,Sienna
7438,2021-11-15 11:56:45,54793835,157,Wola-Ratusz
7447,2021-11-15 21:15:54,54793844,157,Miła
7479,2021-11-15 12:06:00,54793886,157,Hala Kopińska
7692,2021-11-15 10:56:08,54793834,157,Mennica
7693,2021-11-15 11:52:22,54793835,157,Smocza
7694,2021-11-15 11:58:07,54793835,157,Wola-Ratusz
7696,2021-11-15 14:42:33,54793838,157,Wawelska
7702,2021-11-15 20:24:26,54793843,157,Muranowska
7819,2021-11-15 04:59:07,54793828,157,pl.Starynkiewicza
7824,2021-11-15 08:08:57,54793831,157,Chłodna
7827,2021-11-15 10:11:37,54793833,157,pl.Zawiszy
7828,2021-11-15 10:49:38,54793834,157,pl.Zawiszy
7829,2021-11-15 10:53:04,54793834,157,Sienna
7830,2021-11-15 12:16:45,54793835,157,Dobosza

And arrow says the following (interestingly, note that the PUSTELNIK is repeated and then the sequence of values is very similar but offset)

1523,2021-11-15 02:40:32,54827807,102,PUSTELNIK
2475,2021-11-15 04:54:14,54807500,102,PKP Olszynka Grochowska
6218,2021-11-15 10:25:27,54802989,104,PUSTELNIK
7286,2021-11-15 04:29:31,54787914,140,PUSTELNIK
7431,2021-11-15 08:23:38,54793831,157,PUSTELNIK
7433,2021-11-15 10:08:11,54793833,157,PUSTELNIK
7438,2021-11-15 11:56:45,54793835,157,PUSTELNIK
7447,2021-11-15 21:15:54,54793844,157,PUSTELNIK
7479,2021-11-15 12:06:00,54793886,157,Żerań FSO
7692,2021-11-15 10:56:08,54793834,157,Rokosowska
7693,2021-11-15 11:52:22,54793835,157,Sienna
7694,2021-11-15 11:58:07,54793835,157,Wola-Ratusz
7696,2021-11-15 14:42:33,54793838,157,Miła
7702,2021-11-15 20:24:26,54793843,157,Hala Kopińska
7819,2021-11-15 04:59:07,54793828,157,Chłodna
7824,2021-11-15 08:08:57,54793831,157,Mennica
7826,2021-11-15 08:36:09,54793832,157,Smocza
7827,2021-11-15 10:11:37,54793833,157,Wola-Ratusz
7828,2021-11-15 10:49:38,54793834,157,Wawelska
7829,2021-11-15 10:53:04,54793834,157,Muranowska
7830,2021-11-15 12:16:45,54793835,157,pl.Starynkiewicza

@alamb
Copy link
Contributor

alamb commented Dec 23, 2021

This discrepancy looks like it comes out of VariableLenDictionaryDecoder which seems to have been introduced by @yordan-pavlov in apache/arrow-rs#384

I have not studied the code enough yet to fully understand what it is doing, and I need to attend to some other items now. If anyone has ideas (cc @tustvold ) on where to look next I would appreciate it

@alamb
Copy link
Contributor

alamb commented Dec 23, 2021

I will probably file a ticket in arrow-rs shortly with the slimmed down reproducer

@Dandandan
Copy link
Contributor

@alamb this reads like a detective 🕵️‍♂️

@jorgecarleitao
Copy link
Member

I can also open the parquet files from arrow2. I think that this is something on the parquet crate.

the below pasted in this example:

let mut distinct = HashSet::<String>::new();
    let start = SystemTime::now();
    for maybe_batch in reader {
        let batch = maybe_batch?;
        let a = batch
            .column(3)
            .as_any()
            .downcast_ref::<Utf8Array<i32>>()
            .unwrap();
        for i in a {
            if let Some(i) = i {
                distinct.insert(i.to_string());
            }
        }
    }
    println!("{}", distinct.len());
    println!("{:#?}", distinct);

using

cargo run --features io_parquet --example parquet_read_record -- parquets/stops/2021-11.parquet

yields 132 valid stop_names (over all row groups):

{
    "pl.Na Rozdrożu",
    "pl.Zawiszy",
    "Szczęśliwice",
    "Stawki",
    "Vogla",
    "PKP Płudy",
    "Ceramiczna",
    "Chłodna",
    "rondo Zesłańców Syberyjskich",
    "PUSTELNIK",
    "Strzeleckiego",
    "Osiedle",
    "Kanał Gocławski",
    "Centrum",
    "Żerań FSO",
    "Bystra",
    "Powsinek",
    "Sadkowska",
    "Dzika",
    "Hala Kopińska",
    "Nowolipie",
    "gen.Zajączka",
    "Leśnej Polanki",
    "Rembielińska",
    "Pelcowizna",
    "Armatnia",
    "Bełdan",
    "Ćmielowska",
    "Miła",
    "Zamieniecka",
    "Opaczewska",
    "Metro Stadion Narodowy",
    "Bohomolca",
    "Odkryta",
    "pl.Inwalidów",
    "Parafialna",
    "Marysin",
    "Marcelin",
    "Marymont-Potok",
    "Oś Królewska",
    "RONDO ZESŁAŃCÓW SYBERYJSKICH",
    "Białołęka-Ratusz",
    "Mennica",
    "Rudzka",
    "Daniszewska",
    "Budowlana",
    "Sobocka",
    "Starego Dębu",
    "Metro Ratusz-Arsenał",
    "PKP Olszynka Grochowska",
    "Fabryka Pomp",
    "CH Marki",
    "Łysakowska",
    "Brzezińska",
    "Cm.Wolski",
    "Olesin",
    "Dw.Gdański",
    "pl.Starynkiewicza",
    "pl.Wilsona",
    "Ciołkosza",
    "CH Promenada",
    "os.Potok",
    "Norblin",
    "Zbójna Góra",
    "Wola-Ratusz",
    "Czołgistów",
    "Rozbrat",
    "pl.Narutowicza",
    "Rokosowska",
    "Metro Politechnika",
    "Nowodwory",
    "Rezedowa",
    "Park Praski",
    "Dw.Wileński",
    "Bartnicza",
    "Kijowska",
    "Cygańska",
    "Ołówkowa",
    "Marszałkowska",
    "ARMATNIA",
    "PKP Żerań",
    "PKP Falenica",
    "METRO RATUSZ-ARSENAŁ",
    "Polnych Kwiatów",
    "Myśliborska",
    "Smocza",
    "pl.Konstytucji",
    "Urbanistów",
    "Okularowa",
    "Smugowa",
    "Marywilska-Las",
    "Gorzykowska",
    "Zyndrama z Maszkowic",
    "Szwedzka",
    "Dobosza",
    "Muranowska",
    "Majerankowa",
    "Stare Miasto",
    "Dąbrówka Wiślana",
    "Wawelska",
    "Insurekcji",
    "Kino Femina",
    "pl.Bankowy",
    "Poligonowa",
    "Gwiaździsta",
    "Branickiego",
    "Przyczółek Grochowski",
    "Wałbrzyska-Cmentarz",
    "Saska",
    "Raciborska",
    "Śpiewaków",
    "Bolesławicka",
    "Sienna",
    "Choszczówka",
    "Metro Księcia Janusza",
    "Metro Świętokrzyska",
    "os.Marywilska",
    "Chłodnia",
    "Wolności",
    "Bazyliańska",
    "Klaudyny",
    "Leszno",
    "Sarmacka",
    "Metro Stokłosy",
    "Ćwiklińskiej",
    "Inflancka",
    "Parowozowa",
    "Małych Dębów",
    "Zajezdnia Ostrobramska",
    "EC Żerań",
    "Milenijna",
    "Świątynia Opatrzności Bożej",
}

For reference, the file heavily uses RLE-encoding (i.e. the RLE bit of the RLE-bitpacking hybrid parquet encoder), both for the validity and for the dictionary indices, so that would be a place to go for.

@tustvold
Copy link
Contributor

tustvold commented Dec 23, 2021

You could try using ComplexObjectArrayReader to decode the column instead of ArrowArrayReader. This might help narrow down if the bug lies in the RLE decoding or something higher up in ArrowArrayReader. Alternatively you could see if the issue occurs with apache/arrow-rs#1082 which replaces ArrowArrayReader with an alternative that shares more with the PrimitiveArrayReader/ComplexObjectArrayReader implementations, again this might help narrow down the origin.

Not at a computer at the moment, otherwise would try myself

@alamb
Copy link
Contributor

alamb commented Dec 24, 2021

Thanks @tustvold and @jorgecarleitao for the tips. Will give them a try.

@tustvold
Copy link
Contributor

FYI apache/arrow-rs#1110 runs into a similar issue, that appears to be fixed by switching to ComplexObjectArrayReader instead of ArrowArrayReader. I will have a poke around tomorrow if I have time, and see if I can spot what is going wrong.

@alamb
Copy link
Contributor

alamb commented Jan 3, 2022

I tested the fix from @yordan-pavlov in apache/arrow-rs#1130 against my reproducer and with #1130 it now gets the correct answer ❤️ so that seems like progress

@tustvold
Copy link
Contributor

tustvold commented Jan 15, 2022

I believe with the update to use arrow 7.0.0 which contains @yordan-pavlov 's fix, this should now be fixed in DataFusion?

@alamb
Copy link
Contributor

alamb commented Jan 15, 2022

Ye that is my understanding -- someone just needs to rerun the (wonderful) reproducer from @franeklubi to confirm

@alamb
Copy link
Contributor

alamb commented Feb 13, 2022

I reran the queries from @franeklubi at 2e91818:

Setup

CREATE EXTERNAL TABLE stop (time TEXT, trip_tid TEXT, trip_line TEXT, stop_name TEXT) STORED AS CSV WITH HEADER ROW LOCATION '/Users/alamb/Downloads/issue_data/csvs/stop.csv';
CREATE EXTERNAL TABLE trip (tid TEXT, line TEXT, base_day TEXT) STORED AS CSV WITH HEADER ROW LOCATION '/Users/alamb/Downloads/issue_data/csvs/trip.csv';

CREATE EXTERNAL TABLE stop_parquet STORED AS PARQUET LOCATION '/Users/alamb/Downloads/issue_data/parquets/stops/';
CREATE EXTERNAL TABLE trip_parquet STORED AS PARQUET LOCATION '/Users/alamb/Downloads/issue_data/parquets/trips/';

Now the results are consistent when using csv and parquet:

Parquet

SELECT DISTINCT stop_name FROM stop_parquet INNER JOIN trip_parquet ON tid = trip_tid WHERE line = '176' ORDER BY stop_name NULLS LAST;
+----------------------+
| stop_name            |
+----------------------+
| Bartnicza            |
| Bazyliańska          |
| Bolesławicka         |
| Brzezińska           |
| Budowlana            |
| Choszczówka          |
| Chłodnia             |
| Daniszewska          |
| Fabryka Pomp         |
| Insurekcji           |
| Marcelin             |
| Marywilska-Las       |
| Ołówkowa             |
| PKP Płudy            |
| PKP Żerań            |
| Parowozowa           |
| Pelcowizna           |
| Polnych Kwiatów      |
| Raciborska           |
| Rembielińska         |
| Sadkowska            |
| Smugowa              |
| Starego Dębu         |
| Zyndrama z Maszkowic |
| os.Marywilska        |
| Śpiewaków            |
|                      |
+----------------------+
27 rows in set. Query took 0.042 seconds.

Csv

SELECT DISTINCT stop_name FROM stop INNER JOIN trip ON tid = trip_tid WHERE line = '176' ORDER BY stop_name NULLS LAST;
+----------------------+
| stop_name            |
+----------------------+
|                      |
| Bartnicza            |
| Bazyliańska          |
| Bolesławicka         |
| Brzezińska           |
| Budowlana            |
| Choszczówka          |
| Chłodnia             |
| Daniszewska          |
| Fabryka Pomp         |
| Insurekcji           |
| Marcelin             |
| Marywilska-Las       |
| Ołówkowa             |
| PKP Płudy            |
| PKP Żerań            |
| Parowozowa           |
| Pelcowizna           |
| Polnych Kwiatów      |
| Raciborska           |
| Rembielińska         |
| Sadkowska            |
| Smugowa              |
| Starego Dębu         |
| Zyndrama z Maszkowic |
| os.Marywilska        |
| Śpiewaków            |
+----------------------+
27 rows in set. Query took 0.116 seconds.

Interestingly, the CSV results don't seem to have the NULLS LAST 🤔

@alamb alamb closed this as completed Feb 13, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

6 participants