Skip to content

Commit

Permalink
test: add more tests for statistics reading (#10592)
Browse files Browse the repository at this point in the history
* test: add more tests for statistics reading

* Link bug tickets to the tests and run fmt
  • Loading branch information
NGA-TRAN authored May 21, 2024
1 parent aab40e1 commit 96e0ee6
Show file tree
Hide file tree
Showing 2 changed files with 277 additions and 16 deletions.
291 changes: 276 additions & 15 deletions datafusion/core/tests/parquet/arrow_statistics.rs
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ use std::fs::File;
use std::sync::Arc;

use arrow_array::{
make_array, Array, ArrayRef, Int16Array, Int32Array, Int64Array, Int8Array,
RecordBatch, UInt64Array,
make_array, Array, ArrayRef, Decimal128Array, FixedSizeBinaryArray, Float64Array,
Int16Array, Int32Array, Int64Array, Int8Array, RecordBatch, StringArray, UInt64Array,
};
use arrow_schema::{DataType, Field, Schema};
use datafusion::datasource::physical_plan::parquet::{
Expand Down Expand Up @@ -624,20 +624,281 @@ async fn test_dates_64_diff_rg_sizes() {
.run("date64");
}

// BUG:
// https://github.com/apache/datafusion/issues/10604
#[tokio::test]
async fn test_uint() {
let row_per_group = 4;

// This creates a parquet files of 4 columns named "u8", "u16", "u32", "u64"
// "u8" --> UInt8Array
// "u16" --> UInt16Array
// "u32" --> UInt32Array
// "u64" --> UInt64Array

// The file is created by 4 record batches (each has a null row), each has 5 rows but then will be split into 5 row groups with size 4
let reader = parquet_file_many_columns(Scenario::UInt, row_per_group).await;

// u8
// BUG: expect UInt8Array but returns Int32Array
Test {
reader,
expected_min: Arc::new(Int32Array::from(vec![0, 1, 4, 7, 251])), // shoudld be UInt8Array
expected_max: Arc::new(Int32Array::from(vec![3, 4, 6, 250, 254])), // shoudld be UInt8Array
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![4, 4, 4, 4, 4]),
}
.run("u8");

// u16
// BUG: expect UInt16Array but returns Int32Array
let reader = parquet_file_many_columns(Scenario::UInt, row_per_group).await;
Test {
reader,
expected_min: Arc::new(Int32Array::from(vec![0, 1, 4, 7, 251])), // shoudld be UInt16Array
expected_max: Arc::new(Int32Array::from(vec![3, 4, 6, 250, 254])), // shoudld be UInt16Array
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![4, 4, 4, 4, 4]),
}
.run("u16");

// u32
// BUG: expect UInt32Array but returns Int32Array
let reader = parquet_file_many_columns(Scenario::UInt, row_per_group).await;
Test {
reader,
expected_min: Arc::new(Int32Array::from(vec![0, 1, 4, 7, 251])), // shoudld be UInt32Array
expected_max: Arc::new(Int32Array::from(vec![3, 4, 6, 250, 254])), // shoudld be UInt32Array
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![4, 4, 4, 4, 4]),
}
.run("u32");

// u64
// BUG: expect UInt64rray but returns Int64Array
let reader = parquet_file_many_columns(Scenario::UInt, row_per_group).await;
Test {
reader,
expected_min: Arc::new(Int64Array::from(vec![0, 1, 4, 7, 251])), // shoudld be UInt64Array
expected_max: Arc::new(Int64Array::from(vec![3, 4, 6, 250, 254])), // shoudld be UInt64Array
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![4, 4, 4, 4, 4]),
}
.run("u64");
}

#[tokio::test]
async fn test_int32_range() {
let row_per_group = 5;
// This creates a parquet file of 1 column "i"
// file has 2 record batches, each has 2 rows. They will be saved into one row group
let reader = parquet_file_many_columns(Scenario::Int32Range, row_per_group).await;

Test {
reader,
expected_min: Arc::new(Int32Array::from(vec![0])),
expected_max: Arc::new(Int32Array::from(vec![300000])),
expected_null_counts: UInt64Array::from(vec![0]),
expected_row_counts: UInt64Array::from(vec![4]),
}
.run("i");
}

// BUG: not convert UInt32Array to Int32Array
// https://github.com/apache/datafusion/issues/10604
#[tokio::test]
async fn test_uint32_range() {
let row_per_group = 5;
// This creates a parquet file of 1 column "u"
// file has 2 record batches, each has 2 rows. They will be saved into one row group
let reader = parquet_file_many_columns(Scenario::UInt32Range, row_per_group).await;

Test {
reader,
expected_min: Arc::new(Int32Array::from(vec![0])), // shoudld be UInt32Array
expected_max: Arc::new(Int32Array::from(vec![300000])), // shoudld be UInt32Array
expected_null_counts: UInt64Array::from(vec![0]),
expected_row_counts: UInt64Array::from(vec![4]),
}
.run("u");
}

#[tokio::test]
async fn test_float64() {
let row_per_group = 5;
// This creates a parquet file of 1 column "f"
// file has 4 record batches, each has 5 rows. They will be saved into 4 row groups
let reader = parquet_file_many_columns(Scenario::Float64, row_per_group).await;

Test {
reader,
expected_min: Arc::new(Float64Array::from(vec![-5.0, -4.0, -0.0, 5.0])),
expected_max: Arc::new(Float64Array::from(vec![-1.0, 0.0, 4.0, 9.0])),
expected_null_counts: UInt64Array::from(vec![0, 0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![5, 5, 5, 5]),
}
.run("f");
}

#[tokio::test]
async fn test_decimal() {
let row_per_group = 5;
// This creates a parquet file of 1 column "decimal_col" with decimal data type and precicion 9, scale 2
// file has 3 record batches, each has 5 rows. They will be saved into 3 row groups
let reader = parquet_file_many_columns(Scenario::Decimal, row_per_group).await;

Test {
reader,
expected_min: Arc::new(
Decimal128Array::from(vec![100, -500, 2000])
.with_precision_and_scale(9, 2)
.unwrap(),
),
expected_max: Arc::new(
Decimal128Array::from(vec![600, 600, 6000])
.with_precision_and_scale(9, 2)
.unwrap(),
),
expected_null_counts: UInt64Array::from(vec![0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![5, 5, 5]),
}
.run("decimal_col");
}

// BUG: not convert BinaryArray to StringArray
// https://github.com/apache/datafusion/issues/10605
#[tokio::test]
async fn test_byte() {
let row_per_group = 5;

// This creates a parquet file of 4 columns
// "name"
// "service_string"
// "service_binary"
// "service_fixedsize"

// file has 3 record batches, each has 5 rows. They will be saved into 3 row groups
let reader = parquet_file_many_columns(Scenario::ByteArray, row_per_group).await;

// column "name"
Test {
reader,
expected_min: Arc::new(StringArray::from(vec![
"all frontends",
"mixed",
"all backends",
])),
expected_max: Arc::new(StringArray::from(vec![
"all frontends",
"mixed",
"all backends",
])),
expected_null_counts: UInt64Array::from(vec![0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![5, 5, 5]),
}
.run("name");

// column "service_string"
let reader = parquet_file_many_columns(Scenario::ByteArray, row_per_group).await;
Test {
reader,
expected_min: Arc::new(StringArray::from(vec![
"frontend five",
"backend one",
"backend eight",
])),
expected_max: Arc::new(StringArray::from(vec![
"frontend two",
"frontend six",
"backend six",
])),
expected_null_counts: UInt64Array::from(vec![0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![5, 5, 5]),
}
.run("service_string");

// column "service_binary"
let reader = parquet_file_many_columns(Scenario::ByteArray, row_per_group).await;
Test {
reader,
expected_min: Arc::new(StringArray::from(vec![
"frontend five",
"backend one",
"backend eight",
])), // Shuld be BinaryArray
expected_max: Arc::new(StringArray::from(vec![
"frontend two",
"frontend six",
"backend six",
])), // Shuld be BinaryArray
expected_null_counts: UInt64Array::from(vec![0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![5, 5, 5]),
}
.run("service_binary");

// column "service_fixedsize"
// b"fe1", b"be1", b"be4"
let min_input = vec![vec![102, 101, 49], vec![98, 101, 49], vec![98, 101, 52]];
// b"fe5", b"fe6", b"be8"
let max_input = vec![vec![102, 101, 55], vec![102, 101, 54], vec![98, 101, 56]];
let reader = parquet_file_many_columns(Scenario::ByteArray, row_per_group).await;
Test {
reader,
expected_min: Arc::new(
FixedSizeBinaryArray::try_from_iter(min_input.into_iter()).unwrap(),
),
expected_max: Arc::new(
FixedSizeBinaryArray::try_from_iter(max_input.into_iter()).unwrap(),
),
expected_null_counts: UInt64Array::from(vec![0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![5, 5, 5]),
}
.run("service_fixedsize");
}

// PeriodsInColumnNames
#[tokio::test]
async fn test_period_in_column_names() {
let row_per_group = 5;
// This creates a parquet file of 2 columns "name" and "service.name"
// file has 3 record batches, each has 5 rows. They will be saved into 3 row groups
let reader =
parquet_file_many_columns(Scenario::PeriodsInColumnNames, row_per_group).await;

// column "name"
Test {
reader,
expected_min: Arc::new(StringArray::from(vec![
"HTTP GET / DISPATCH",
"HTTP PUT / DISPATCH",
"HTTP GET / DISPATCH",
])),
expected_max: Arc::new(StringArray::from(vec![
"HTTP GET / DISPATCH",
"HTTP PUT / DISPATCH",
"HTTP GET / DISPATCH",
])),
expected_null_counts: UInt64Array::from(vec![0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![5, 5, 5]),
}
.run("name");

// column "service.name"
let reader =
parquet_file_many_columns(Scenario::PeriodsInColumnNames, row_per_group).await;
Test {
reader,
expected_min: Arc::new(StringArray::from(vec!["frontend", "backend", "backend"])),
expected_max: Arc::new(StringArray::from(vec![
"frontend", "frontend", "backend",
])),
expected_null_counts: UInt64Array::from(vec![0, 0, 0]),
expected_row_counts: UInt64Array::from(vec![5, 5, 5]),
}
.run("service.name");
}

// TODO:
// Other data types to tests
// `u8`, `u16`, `u32`, and `u64`,
// UInt,
// UInt32Range,
// Float64,
// Decimal,
// DecimalBloomFilterInt32,
// DecimalBloomFilterInt64,
// DecimalLargePrecision,
// DecimalLargePrecisionBloomFilter,
// ByteArray,
// PeriodsInColumnNames,
// WithNullValuesPageLevel,
// WITHOUT Stats

/////// NEGATIVE TESTS ///////
Expand Down
2 changes: 1 addition & 1 deletion datafusion/core/tests/parquet/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -427,7 +427,7 @@ fn make_int_batches(start: i8, end: i8) -> RecordBatch {
.unwrap()
}

/// Return record batch with i8, i16, i32, and i64 sequences
/// Return record batch with u8, u16, u32, and u64 sequences
///
/// Columns are named
/// "u8" -> UInt8Array
Expand Down

0 comments on commit 96e0ee6

Please sign in to comment.