-
Notifications
You must be signed in to change notification settings - Fork 4.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Python] Implemented Hugging Face Model Handler (#26632)
* automodel first pass * new model * updated model handler api * add model_class param * update doc comments * updated integration test and example * unit test, modified params * add test setup for hugging face tests * fix lints * fix import order * refactor, doc, lints * refactor, doc comments * change test file * update types * update tox, doc, lints * fix lints * pr type * update gpu warnings * fix pydoc * update typos, refactor * fix docstrings * refactor, doc, lints * pydoc * fix pydoc * updates to keyed model handler * pylints
- Loading branch information
1 parent
1526263
commit 193b720
Showing
10 changed files
with
1,042 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
177 changes: 177 additions & 0 deletions
177
sdks/python/apache_beam/examples/inference/huggingface_language_modeling.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one or more | ||
# contributor license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright ownership. | ||
# The ASF licenses this file to You under the Apache License, Version 2.0 | ||
# (the "License"); you may not use this file except in compliance with | ||
# the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
"""A pipeline that uses RunInference to perform Language Modeling with | ||
masked language model from Hugging Face. | ||
This pipeline takes sentences from a custom text file, converts the last word | ||
of the sentence into a <mask> token, and then uses the AutoModelForMaskedLM from | ||
Hugging Face to predict the best word for the masked token given all the words | ||
already in the sentence. The pipeline then writes the prediction to an output | ||
file in which users can then compare against the original sentence. | ||
""" | ||
|
||
import argparse | ||
import logging | ||
from typing import Dict | ||
from typing import Iterable | ||
from typing import Iterator | ||
from typing import Tuple | ||
|
||
import apache_beam as beam | ||
import torch | ||
from apache_beam.ml.inference.base import KeyedModelHandler | ||
from apache_beam.ml.inference.base import PredictionResult | ||
from apache_beam.ml.inference.base import RunInference | ||
from apache_beam.ml.inference.huggingface_inference import HuggingFaceModelHandlerKeyedTensor | ||
from apache_beam.options.pipeline_options import PipelineOptions | ||
from apache_beam.options.pipeline_options import SetupOptions | ||
from apache_beam.runners.runner import PipelineResult | ||
from transformers import AutoModelForMaskedLM | ||
from transformers import AutoTokenizer | ||
|
||
|
||
def add_mask_to_last_word(text: str) -> Tuple[str, str]: | ||
text_list = text.split() | ||
return text, ' '.join(text_list[:-2] + ['<mask>', text_list[-1]]) | ||
|
||
|
||
def tokenize_sentence( | ||
text_and_mask: Tuple[str, str], | ||
tokenizer: AutoTokenizer) -> Tuple[str, Dict[str, torch.Tensor]]: | ||
text, masked_text = text_and_mask | ||
tokenized_sentence = tokenizer.encode_plus(masked_text, return_tensors="pt") | ||
|
||
# Workaround to manually remove batch dim until we have the feature to | ||
# add optional batching flag. | ||
# TODO(https://github.com/apache/beam/issues/21863): Remove once optional | ||
# batching flag added | ||
return text, { | ||
k: torch.squeeze(v) | ||
for k, v in dict(tokenized_sentence).items() | ||
} | ||
|
||
|
||
def filter_empty_lines(text: str) -> Iterator[str]: | ||
if len(text.strip()) > 0: | ||
yield text | ||
|
||
|
||
class PostProcessor(beam.DoFn): | ||
"""Processes the PredictionResult to get the predicted word. | ||
The logits are the output of the Model. We can get the word with the highest | ||
probability of being a candidate replacement word by taking the argmax. | ||
""" | ||
def __init__(self, tokenizer: AutoTokenizer): | ||
super().__init__() | ||
self.tokenizer = tokenizer | ||
|
||
def process(self, element: Tuple[str, PredictionResult]) -> Iterable[str]: | ||
text, prediction_result = element | ||
inputs = prediction_result.example | ||
logits = prediction_result.inference['logits'] | ||
mask_token_index = torch.where( | ||
inputs["input_ids"] == self.tokenizer.mask_token_id)[0] | ||
predicted_token_id = logits[mask_token_index].argmax(axis=-1) | ||
decoded_word = self.tokenizer.decode(predicted_token_id) | ||
yield text + ';' + decoded_word | ||
|
||
|
||
def parse_known_args(argv): | ||
"""Parses args for the workflow.""" | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
'--input', | ||
dest='input', | ||
help='Path to the text file containing sentences.') | ||
parser.add_argument( | ||
'--output', | ||
dest='output', | ||
required=True, | ||
help='Path of file in which to save the output predictions.') | ||
parser.add_argument( | ||
'--model_name', | ||
dest='model_name', | ||
required=True, | ||
help='bert uncased model. This can be base model or large model') | ||
parser.add_argument( | ||
'--model_class', | ||
dest='model_class', | ||
default=AutoModelForMaskedLM, | ||
help="Name of the model from Hugging Face") | ||
return parser.parse_known_args(argv) | ||
|
||
|
||
def run( | ||
argv=None, save_main_session=True, test_pipeline=None) -> PipelineResult: | ||
""" | ||
Args: | ||
argv: Command line arguments defined for this example. | ||
save_main_session: Used for internal testing. | ||
test_pipeline: Used for internal testing. | ||
""" | ||
known_args, pipeline_args = parse_known_args(argv) | ||
pipeline_options = PipelineOptions(pipeline_args) | ||
pipeline_options.view_as(SetupOptions).save_main_session = save_main_session | ||
|
||
pipeline = test_pipeline | ||
if not test_pipeline: | ||
pipeline = beam.Pipeline(options=pipeline_options) | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(known_args.model_name) | ||
|
||
model_handler = HuggingFaceModelHandlerKeyedTensor( | ||
model_uri=known_args.model_name, | ||
model_class=known_args.model_class, | ||
framework='pt', | ||
max_batch_size=1) | ||
if not known_args.input: | ||
text = ( | ||
pipeline | 'CreateSentences' >> beam.Create([ | ||
'The capital of France is Paris .', | ||
'It is raining cats and dogs .', | ||
'Today is Monday and tomorrow is Tuesday .', | ||
'There are 5 coconuts on this palm tree .', | ||
'The strongest person in the world is not famous .', | ||
'The secret ingredient to his wonderful life was gratitude .', | ||
'The biggest animal in the world is the whale .', | ||
])) | ||
else: | ||
text = ( | ||
pipeline | 'ReadSentences' >> beam.io.ReadFromText(known_args.input)) | ||
text_and_tokenized_text_tuple = ( | ||
text | ||
| 'FilterEmptyLines' >> beam.ParDo(filter_empty_lines) | ||
| 'AddMask' >> beam.Map(add_mask_to_last_word) | ||
| | ||
'TokenizeSentence' >> beam.Map(lambda x: tokenize_sentence(x, tokenizer))) | ||
output = ( | ||
text_and_tokenized_text_tuple | ||
| 'RunInference' >> RunInference(KeyedModelHandler(model_handler)) | ||
| 'ProcessOutput' >> beam.ParDo(PostProcessor(tokenizer=tokenizer))) | ||
_ = output | "WriteOutput" >> beam.io.WriteToText( | ||
known_args.output, shard_name_template='', append_trailing_newlines=True) | ||
|
||
result = pipeline.run() | ||
result.wait_until_finish() | ||
return result | ||
|
||
|
||
if __name__ == '__main__': | ||
logging.getLogger().setLevel(logging.INFO) | ||
run() |
Oops, something went wrong.