-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into feat/property_fields_container
- Loading branch information
Showing
1 changed file
with
154 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
""" | ||
.. _ref_basic_hdf5: | ||
HDF5 export and import operations | ||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
This example shows you how to use the HDF5 format to export results | ||
and meshed regions in an H5 file. | ||
It also demonstrates how to read results and meshed regions from the | ||
created H5 file. | ||
First, it exports all the results for all time frequencies, | ||
then it exports all the time sets for the results, per time set. | ||
Finally, it reads the results and compares them. | ||
For the example to run correctly, ensure you do not have an existing H5 file. | ||
""" | ||
|
||
############################################################################### | ||
# Import modules, instantiate model and create temporary folder | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Import the ``dpf-core`` module and its examples files. | ||
|
||
import ansys.dpf.core as dpf | ||
from ansys.dpf.core import examples | ||
|
||
############################################################################### | ||
# Instantiate the model and the provider operators: | ||
|
||
model = dpf.Model(examples.download_transient_result()) | ||
streams_cont = model.metadata.streams_provider.outputs.streams_container | ||
time_freq_op = dpf.operators.metadata.time_freq_provider(streams_container=streams_cont) | ||
time_freq_support = time_freq_op.outputs.time_freq_support() | ||
time_freqs = time_freq_support.time_frequencies | ||
|
||
result_names_on_all_time_steps = [] | ||
result_names_time_per_time = [] | ||
|
||
num_res = len(model.results) | ||
num_sets = len(time_freqs.data) | ||
|
||
############################################################################### | ||
# Define a temporary folder for outputs: | ||
tmpdir = dpf.core.make_tmp_dir_server(dpf.SERVER) | ||
files = [ | ||
dpf.path_utilities.join(tmpdir, "file_on_all_time_steps.h5"), | ||
dpf.path_utilities.join(tmpdir, "file_time_per_time.h5"), | ||
] | ||
|
||
############################################################################### | ||
# Use H5 serialization operator | ||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Export all results on all time frequencies: | ||
h5_serialization_op_all_times = dpf.operators.serialization.hdf5dpf_generate_result_file() | ||
h5_serialization_op_all_times.inputs.filename.connect(files[0]) | ||
h5_serialization_op_all_times.inputs.mesh_provider_out.connect(model.metadata.meshed_region) | ||
h5_serialization_op_all_times.inputs.time_freq_support_out.connect(time_freq_support) | ||
|
||
for i, res in enumerate(model.results): | ||
res_name = "result_" + res().name | ||
result_names_on_all_time_steps.append(res_name) | ||
h5_serialization_op_all_times.connect(2 * i + 4, res_name) | ||
h5_serialization_op_all_times.connect(2 * i + 5, res.on_all_time_freqs()) | ||
|
||
h5_all_times_ds = h5_serialization_op_all_times.outputs.data_sources() | ||
|
||
############################################################################### | ||
# Export all the results, time set per time set: | ||
h5_serialization_op_set_per_set = dpf.operators.serialization.hdf5dpf_generate_result_file() | ||
h5_serialization_op_set_per_set.inputs.filename.connect(files[1]) | ||
h5_serialization_op_set_per_set.inputs.mesh_provider_out.connect(model.metadata.meshed_region) | ||
h5_serialization_op_set_per_set.inputs.time_freq_support_out.connect(time_freq_support) | ||
|
||
for j, freq in enumerate(time_freqs.data): | ||
for i, res in enumerate(model.results): | ||
res_name = "result_" + res().name + "_time_" + str(freq) | ||
result_names_time_per_time.append(res_name) | ||
h5_serialization_op_set_per_set.connect(2 * (j * num_res + i) + 4, res_name) | ||
h5_serialization_op_set_per_set.connect( | ||
2 * (j * num_res + i) + 5, res.on_time_scoping(j + 1).eval() | ||
) | ||
|
||
h5_set_per_set_ds = h5_serialization_op_set_per_set.outputs.data_sources() | ||
|
||
############################################################################### | ||
# Use H5 reading operator | ||
# ~~~~~~~~~~~~~~~~~~~~~~~ | ||
# Read the results from all time steps files: | ||
h5_stream_prov_op = dpf.operators.metadata.streams_provider() | ||
h5_stream_prov_op.inputs.data_sources.connect(h5_all_times_ds) | ||
res_deser_all_times_list = [] | ||
h5_read_op = dpf.operators.serialization.hdf5dpf_custom_read() | ||
h5_read_op.inputs.streams.connect(h5_stream_prov_op.outputs) | ||
for i, res_name in enumerate(result_names_on_all_time_steps): | ||
h5_read_op.inputs.result_name.connect(res_name) | ||
res_deser = h5_read_op.outputs.field_or_fields_container_as_fields_container() | ||
res_deser_all_times_list.append(res_deser) | ||
|
||
############################################################################### | ||
# Read the meshed region from all time steps file: | ||
mesh_prov_op = dpf.operators.mesh.mesh_provider() | ||
mesh_prov_op.inputs.streams_container.connect(h5_stream_prov_op.outputs) | ||
mesh_deser_all_times = mesh_prov_op.outputs.mesh() | ||
|
||
############################################################################### | ||
# Read the results from the time set per set file: | ||
h5_stream_prov_op_2 = dpf.operators.metadata.streams_provider() | ||
h5_stream_prov_op_2.inputs.data_sources.connect(h5_set_per_set_ds) | ||
res_deser_set_per_set_list = [] | ||
h5_read_op_2 = dpf.operators.serialization.hdf5dpf_custom_read() | ||
h5_read_op_2.inputs.streams.connect(h5_stream_prov_op_2.outputs) | ||
for i, res_name in enumerate(result_names_time_per_time): | ||
h5_read_op_2.inputs.result_name.connect(res_name) | ||
res_deser = h5_read_op_2.outputs.field_or_fields_container_as_fields_container() | ||
res_deser_set_per_set_list.append(res_deser) | ||
|
||
############################################################################### | ||
# Read the meshed region from all time steps files: | ||
mesh_prov_op_2 = dpf.operators.mesh.mesh_provider() | ||
mesh_prov_op_2.inputs.streams_container.connect(h5_stream_prov_op_2.outputs) | ||
mesh_deser_set_per_set = mesh_prov_op_2.outputs.mesh() | ||
|
||
############################################################################### | ||
# Compare results | ||
# ~~~~~~~~~~~~~~~ | ||
|
||
############################################################################### | ||
# Print global data: | ||
print("Number of results is: " + str(num_res)) | ||
print("Number of time sets is: " + str(num_sets)) | ||
print("Results names for 'all time steps' file: ") | ||
print(result_names_on_all_time_steps) | ||
print("Results names for 'set per set' file: ") | ||
print(result_names_time_per_time) | ||
|
||
############################################################################### | ||
# compare first result at second time set: | ||
fc_all_steps_first_step_first_res = res_deser_all_times_list[0].get_field_by_time_id(2) # set 1 | ||
mesh_deser_all_times.plot(fc_all_steps_first_step_first_res) | ||
|
||
mesh_deser_set_per_set.plot(res_deser_set_per_set_list[num_res * 1 + 0]) | ||
|
||
############################################################################### | ||
# compare 4th result at 6 time set: | ||
to_nodal_op = dpf.operators.averaging.to_nodal_fc() | ||
|
||
fc_all_steps_first_step_first_res = res_deser_all_times_list[3].get_field_by_time_id(6) # set 6 | ||
mesh_deser_all_times.plot( | ||
dpf.operators.averaging.to_nodal(fc_all_steps_first_step_first_res).outputs.field() | ||
) | ||
|
||
mesh_deser_set_per_set.plot( | ||
dpf.operators.averaging.to_nodal(res_deser_set_per_set_list[num_res * 5 + 3]).outputs.field() | ||
) |