Skip to content

Commit

Permalink
add docs for vertica extractor
Browse files Browse the repository at this point in the history
Signed-off-by: Ashutosh Sanzgiri <[email protected]>
  • Loading branch information
sanzgiri committed Feb 3, 2021
1 parent 8db2771 commit 4d495aa
Show file tree
Hide file tree
Showing 2 changed files with 194 additions and 0 deletions.
9 changes: 9 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -444,6 +444,15 @@ job = DefaultJob(
job.launch()
```

#### [VerticaMetadataExtractor](https://github.com/amundsen-io/amundsendatabuilder/blob/master/databuilder/extractor/vertica_metadata_extractor.py "MysqlMetadataExtractor")
An extractor that extracts table and column metadata including database, schema, table name, column name and column datatype from a Vertica database.

A sample loading script for Vertica is provided [here](https://github.com/amundsen-io/amundsendatabuilder/blob/master/databuilder/extractor/databuilder/example/scripts/sample_vertica_loader.py)

By default, the Vertica database name is used as the cluster name. The `where_clause_suffix` in the example can be used to define which schemas you would like to query.



#### [SQLAlchemyExtractor](https://github.com/amundsen-io/amundsendatabuilder/blob/master/databuilder/extractor/sql_alchemy_extractor.py "SQLAlchemyExtractor")
An extractor utilizes [SQLAlchemy](https://www.sqlalchemy.org/ "SQLAlchemy") to extract record from any database that support SQL Alchemy.
```python
Expand Down
185 changes: 185 additions & 0 deletions example/scripts/sample_vertica_loader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
# Copyright Contributors to the Amundsen project.
# SPDX-License-Identifier: Apache-2.0

"""
This is a example script which demo how to load data
into Neo4j and Elasticsearch without using an Airflow DAG.
"""

import logging
import os
import sys
import textwrap
import uuid
from elasticsearch import Elasticsearch
from pyhocon import ConfigFactory
from sqlalchemy.ext.declarative import declarative_base

from databuilder.extractor.vertica_metadata_extractor import VerticaMetadataExtractor
from databuilder.extractor.sql_alchemy_extractor import SQLAlchemyExtractor
from databuilder.extractor.neo4j_extractor import Neo4jExtractor
from databuilder.extractor.neo4j_search_data_extractor import Neo4jSearchDataExtractor
from databuilder.job.job import DefaultJob
from databuilder.loader.file_system_elasticsearch_json_loader import FSElasticsearchJSONLoader
from databuilder.loader.file_system_neo4j_csv_loader import FsNeo4jCSVLoader
from databuilder.publisher import neo4j_csv_publisher
from databuilder.publisher.elasticsearch_publisher import ElasticsearchPublisher
from databuilder.publisher.neo4j_csv_publisher import Neo4jCsvPublisher
from databuilder.task.task import DefaultTask
from databuilder.transformer.base_transformer import NoopTransformer

es_host = os.getenv('CREDENTIALS_ELASTICSEARCH_PROXY_HOST', 'localhost')
neo_host = os.getenv('CREDENTIALS_NEO4J_PROXY_HOST', 'localhost')

es_port = os.getenv('CREDENTIALS_ELASTICSEARCH_PROXY_PORT', 9200)
neo_port = os.getenv('CREDENTIALS_NEO4J_PROXY_PORT', 7687)

if len(sys.argv) > 1:
es_host = sys.argv[1]
if len(sys.argv) > 2:
neo_host = sys.argv[2]

es = Elasticsearch([
{'host': es_host, 'port': es_port},
])

DB_FILE = '/tmp/test.db'
SQLITE_CONN_STRING = 'sqlite:////tmp/test.db'
Base = declarative_base()

NEO4J_ENDPOINT = 'bolt://{}:{}'.format(neo_host, neo_port)

neo4j_endpoint = NEO4J_ENDPOINT

neo4j_user = 'neo4j'
neo4j_password = 'test'


# specify vertica access credentials, host server, port (default 5433),
# database name (default 'vertica')
def connection_string():
user = 'username'
password = 'password'
host = 'vertica-budget.host'
port = '5433'
db = 'vertica'
return "vertica+vertica_python://%s:%s@%s:%s/%s" % (user, password, host, port, db)

# provide schemas to run extraction on (default 'public')
def run_vertica_job():
where_clause_suffix = textwrap.dedent("""
where c.table_schema = 'public'
""")

tmp_folder = '/var/tmp/amundsen/table_metadata'
node_files_folder = '{tmp_folder}/nodes/'.format(tmp_folder=tmp_folder)
relationship_files_folder = '{tmp_folder}/relationships/'.format(tmp_folder=tmp_folder)

job_config = ConfigFactory.from_dict({
'extractor.vertica_metadata.{}'.format(VerticaMetadataExtractor.WHERE_CLAUSE_SUFFIX_KEY):
where_clause_suffix,
'extractor.vertica_metadata.{}'.format(VerticaMetadataExtractor.USE_CATALOG_AS_CLUSTER_NAME):
False,
'extractor.vertica_metadata.{}'.format(VerticaMetadataExtractor.CLUSTER_KEY):
'vertica_budget',
'extractor.vertica_metadata.extractor.sqlalchemy.{}'.format(SQLAlchemyExtractor.CONN_STRING):
connection_string(),
'loader.filesystem_csv_neo4j.{}'.format(FsNeo4jCSVLoader.NODE_DIR_PATH):
node_files_folder,
'loader.filesystem_csv_neo4j.{}'.format(FsNeo4jCSVLoader.RELATION_DIR_PATH):
relationship_files_folder,
'publisher.neo4j.{}'.format(neo4j_csv_publisher.NODE_FILES_DIR):
node_files_folder,
'publisher.neo4j.{}'.format(neo4j_csv_publisher.RELATION_FILES_DIR):
relationship_files_folder,
'publisher.neo4j.{}'.format(neo4j_csv_publisher.NEO4J_END_POINT_KEY):
neo4j_endpoint,
'publisher.neo4j.{}'.format(neo4j_csv_publisher.NEO4J_USER):
neo4j_user,
'publisher.neo4j.{}'.format(neo4j_csv_publisher.NEO4J_PASSWORD):
neo4j_password,
'publisher.neo4j.{}'.format(neo4j_csv_publisher.JOB_PUBLISH_TAG):
'unique_tag', # should use unique tag here like {ds}
})
job = DefaultJob(conf=job_config,
task=DefaultTask(extractor=VerticaMetadataExtractor(), loader=FsNeo4jCSVLoader()),
publisher=Neo4jCsvPublisher())
return job


def create_es_publisher_sample_job(elasticsearch_index_alias='table_search_index',
elasticsearch_doc_type_key='table',
model_name='databuilder.models.table_elasticsearch_document.TableESDocument',
cypher_query=None,
elasticsearch_mapping=None):
"""
:param elasticsearch_index_alias: alias for Elasticsearch used in
amundsensearchlibrary/search_service/config.py as an index
:param elasticsearch_doc_type_key: name the ElasticSearch index is prepended with. Defaults to `table` resulting in
`table_search_index`
:param model_name: the Databuilder model class used in transporting between Extractor and Loader
:param cypher_query: Query handed to the `Neo4jSearchDataExtractor` class, if None is given (default)
it uses the `Table` query baked into the Extractor
:param elasticsearch_mapping: Elasticsearch field mapping "DDL" handed to the `ElasticsearchPublisher` class,
if None is given (default) it uses the `Table` query baked into the Publisher
"""
# loader saves data to this location and publisher reads it from here
extracted_search_data_path = '/var/tmp/amundsen/search_data.json'

task = DefaultTask(loader=FSElasticsearchJSONLoader(),
extractor=Neo4jSearchDataExtractor(),
transformer=NoopTransformer())

# elastic search client instance
elasticsearch_client = es
# unique name of new index in Elasticsearch
elasticsearch_new_index_key = 'tables' + str(uuid.uuid4())

job_config = ConfigFactory.from_dict({
'extractor.search_data.extractor.neo4j.{}'.format(Neo4jExtractor.GRAPH_URL_CONFIG_KEY): neo4j_endpoint,
'extractor.search_data.extractor.neo4j.{}'.format(Neo4jExtractor.MODEL_CLASS_CONFIG_KEY): model_name,
'extractor.search_data.extractor.neo4j.{}'.format(Neo4jExtractor.NEO4J_AUTH_USER): neo4j_user,
'extractor.search_data.extractor.neo4j.{}'.format(Neo4jExtractor.NEO4J_AUTH_PW): neo4j_password,
'loader.filesystem.elasticsearch.{}'.format(FSElasticsearchJSONLoader.FILE_PATH_CONFIG_KEY):
extracted_search_data_path,
'loader.filesystem.elasticsearch.{}'.format(FSElasticsearchJSONLoader.FILE_MODE_CONFIG_KEY): 'w',
'publisher.elasticsearch.{}'.format(ElasticsearchPublisher.FILE_PATH_CONFIG_KEY):
extracted_search_data_path,
'publisher.elasticsearch.{}'.format(ElasticsearchPublisher.FILE_MODE_CONFIG_KEY): 'r',
'publisher.elasticsearch.{}'.format(ElasticsearchPublisher.ELASTICSEARCH_CLIENT_CONFIG_KEY):
elasticsearch_client,
'publisher.elasticsearch.{}'.format(ElasticsearchPublisher.ELASTICSEARCH_NEW_INDEX_CONFIG_KEY):
elasticsearch_new_index_key,
'publisher.elasticsearch.{}'.format(ElasticsearchPublisher.ELASTICSEARCH_DOC_TYPE_CONFIG_KEY):
elasticsearch_doc_type_key,
'publisher.elasticsearch.{}'.format(ElasticsearchPublisher.ELASTICSEARCH_ALIAS_CONFIG_KEY):
elasticsearch_index_alias,
})

# only optionally add these keys, so need to dynamically `put` them
if cypher_query:
job_config.put('extractor.search_data.{}'.format(Neo4jSearchDataExtractor.CYPHER_QUERY_CONFIG_KEY),
cypher_query)
if elasticsearch_mapping:
job_config.put('publisher.elasticsearch.{}'.format(ElasticsearchPublisher.ELASTICSEARCH_MAPPING_CONFIG_KEY),
elasticsearch_mapping)

job = DefaultJob(conf=job_config,
task=task,
publisher=ElasticsearchPublisher())
return job


if __name__ == "__main__":
# Uncomment next line to get INFO level logging
# logging.basicConfig(level=logging.INFO)

loading_job = run_vertica_job()
loading_job.launch()

job_es_table = create_es_publisher_sample_job(
elasticsearch_index_alias='table_search_index',
elasticsearch_doc_type_key='table',
model_name='databuilder.models.table_elasticsearch_document.TableESDocument')
job_es_table.launch()

0 comments on commit 4d495aa

Please sign in to comment.