forked from rtdip/core
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
#22 clean data based on intervall
- Loading branch information
Showing
2 changed files
with
478 additions
and
0 deletions.
There are no files selected for viewing
174 changes: 174 additions & 0 deletions
174
src/sdk/python/rtdip_sdk/pipelines/data_wranglers/spark/data_quality/interval_filtering.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
# Copyright 2022 RTDIP | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from datetime import timedelta | ||
|
||
import pandas as pd | ||
from pyspark.sql import functions as F | ||
from pyspark.sql import SparkSession | ||
from pyspark.sql import DataFrame | ||
|
||
from ...._pipeline_utils.models import Libraries, SystemType | ||
from ...interfaces import WranglerBaseInterface | ||
|
||
|
||
class IntervalFiltering(WranglerBaseInterface): | ||
""" | ||
Cleanses a DataFrame by removing rows outside a specified interval window. | ||
Example: | ||
Parameters: | ||
spark (SparkSession): A SparkSession object. | ||
df (DataFrame): PySpark DataFrame to be converted | ||
interval (int): The interval length for cleansing. | ||
interval_unit (str): 'hours', 'minutes', 'seconds' or 'milliseconds' to specify the unit of the interval. | ||
""" | ||
|
||
""" Default time stamp column name if not set in the constructor """ | ||
DEFAULT_TIME_STAMP_COLUMN_NAME: str = "EventTime" | ||
|
||
def __init__( | ||
self, | ||
spark: SparkSession, | ||
df: DataFrame, | ||
interval: int, | ||
interval_unit: str, | ||
time_stamp_column_name: str = None, | ||
tolerance: int = None, | ||
) -> None: | ||
self.spark = spark | ||
self.df = df | ||
self.interval = interval | ||
self.interval_unit = interval_unit | ||
self.tolerance = tolerance | ||
if time_stamp_column_name is None: | ||
self.time_stamp_column_name = self.DEFAULT_TIME_STAMP_COLUMN_NAME | ||
else: | ||
self.time_stamp_column_name = time_stamp_column_name | ||
|
||
@staticmethod | ||
def system_type(): | ||
""" | ||
Attributes: | ||
SystemType (Environment): Requires PYSPARK | ||
""" | ||
return SystemType.PYSPARK | ||
|
||
@staticmethod | ||
def libraries(): | ||
libraries = Libraries() | ||
return libraries | ||
|
||
@staticmethod | ||
def settings() -> dict: | ||
return {} | ||
|
||
def convert_column_to_timestamp(self) -> DataFrame: | ||
try: | ||
return self.df.withColumn( | ||
self.time_stamp_column_name, F.to_timestamp(self.time_stamp_column_name) | ||
) | ||
except Exception as e: | ||
raise ValueError( | ||
f"Error converting column {self.time_stamp_column_name} to timestamp: {e}" | ||
) | ||
|
||
def get_time_delta(self, value: int) -> timedelta: | ||
if self.interval_unit == "minutes": | ||
return timedelta(minutes=value) | ||
elif self.interval_unit == "days": | ||
return timedelta(days=value) | ||
elif self.interval_unit == "hours": | ||
return timedelta(hours=value) | ||
elif self.interval_unit == "seconds": | ||
return timedelta(seconds=value) | ||
elif self.interval_unit == "milliseconds": | ||
return timedelta(milliseconds=value) | ||
else: | ||
raise ValueError( | ||
"interval_unit must be either 'days', 'hours', 'minutes', 'seconds' or 'milliseconds'" | ||
) | ||
|
||
def check_if_outside_of_interval( | ||
self, | ||
current_time_stamp: pd.Timestamp, | ||
last_time_stamp: pd.Timestamp, | ||
time_delta_in_ms: float, | ||
tolerance_in_ms: float, | ||
) -> bool: | ||
if tolerance_in_ms is None: | ||
return ( | ||
(current_time_stamp - last_time_stamp).total_seconds() * 1000 | ||
) >= time_delta_in_ms | ||
else: | ||
return ( | ||
(current_time_stamp - last_time_stamp).total_seconds() * 1000 | ||
) + tolerance_in_ms >= time_delta_in_ms | ||
|
||
def format_date_time_to_string(self, time_stamp: pd.Timestamp) -> str: | ||
try: | ||
return time_stamp.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] | ||
except Exception as e: | ||
raise ValueError(f"Error converting timestamp to string: {e}") | ||
|
||
def filter(self) -> DataFrame: | ||
""" | ||
Filters the DataFrame based on the interval | ||
""" | ||
|
||
if self.time_stamp_column_name not in self.df.columns: | ||
raise ValueError( | ||
f"Column {self.time_stamp_column_name} not found in the DataFrame." | ||
) | ||
|
||
original_schema = self.df.schema | ||
self.df = self.convert_column_to_timestamp().orderBy( | ||
self.time_stamp_column_name | ||
) | ||
|
||
tolerance_in_ms = None | ||
if self.tolerance is not None: | ||
tolerance_in_ms = self.get_time_delta(self.tolerance).total_seconds() * 1000 | ||
print(tolerance_in_ms) | ||
|
||
time_delta_in_ms = self.get_time_delta(self.interval).total_seconds() * 1000 | ||
|
||
rows = self.df.collect() | ||
last_time_stamp = rows[0][self.time_stamp_column_name] | ||
first_row = rows[0].asDict() | ||
first_row[self.time_stamp_column_name] = self.format_date_time_to_string( | ||
first_row[self.time_stamp_column_name] | ||
) | ||
|
||
cleansed_df = [first_row] | ||
|
||
for i in range(1, len(rows)): | ||
current_row = rows[i] | ||
current_time_stamp = current_row[self.time_stamp_column_name] | ||
|
||
if self.check_if_outside_of_interval( | ||
current_time_stamp, last_time_stamp, time_delta_in_ms, tolerance_in_ms | ||
): | ||
current_row_dict = current_row.asDict() | ||
current_row_dict[self.time_stamp_column_name] = ( | ||
self.format_date_time_to_string( | ||
current_row_dict[self.time_stamp_column_name] | ||
) | ||
) | ||
cleansed_df.append(current_row_dict) | ||
last_time_stamp = current_time_stamp | ||
|
||
result_df = self.spark.createDataFrame(cleansed_df, schema=original_schema) | ||
|
||
return result_df |
Oops, something went wrong.