-
Notifications
You must be signed in to change notification settings - Fork 133
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Amichay Oren <[email protected]>
- Loading branch information
Showing
2 changed files
with
390 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,389 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# How good was my strategy?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"environment = \"PAPER\" # PAPER / PROD / BACKTEST\n", | ||
"date = \"2020-12-17\"\n", | ||
"strategy ='short_trap_buster'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### imports" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from datetime import datetime, timedelta\n", | ||
"import numpy as np\n", | ||
"from pytz import timezone\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from IPython.display import HTML, display, Markdown\n", | ||
"from liualgotrader.models.gain_loss import TradeAnalysis\n", | ||
"from liualgotrader.models.trending_tickers import TrendingTickers\n", | ||
"from liualgotrader.analytics.analysis import strategy_return_for_qty_one\n", | ||
"import alpaca_trade_api as tradeapi" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### connect to data-source" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"api = tradeapi.REST(base_url=\"https://api.alpaca.markets\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## How to calculate strategy relevance, using p-value" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"* Pick $e𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡$ , $𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦$ , and a $𝑑𝑎𝑡𝑒$ when strategy was used,\n", | ||
"* Let $window$ be the length in minutes of trading windows, during which $strategy$ may buy a stock,\n", | ||
"* Let $C$ be the list of all scanned stocks during $date$,\n", | ||
"* For $c \\in C$, Let $T_{0}(c)$=the time $c$ was added to $C$, \n", | ||
"* For $c \\in C$, Let $Duration(c)$=$window-T_{0}(c)$, \n", | ||
"* For $c \\in C$, Let $Hold(c)$=sum of time $stategy$ had position in $c$, \n", | ||
"* Let $buy-actions$/$sell-actions$ represent all buy(/sell) decisions made by $strategy$," | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### $Prob(BUY) = \\frac{|buy-actions|}{\\sum \\limits _{c}^{C} Duration(c) - Hold(c)}$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### $Prob(SELL) = \\frac{|sell-actions|}{\\sum \\limits _{c}^{C} Hold(c)}$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### pseudo-code" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"<code>gain-vs-strat = 0 \n", | ||
" for i in range(10000):\n", | ||
" gain = 0 \n", | ||
" for c in C:\n", | ||
" for t in range($T_{0}(c)$,$windows$):\n", | ||
" gain += calculate gain based on Prob(BUY) and Prob(SELL)\n", | ||
" gain-vs-strat += 1 if stategy_gain > gain else 0</code> " | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## $1 - p_{value} = \\frac{gain-vs-strat}{10,000}$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"NOTE: below 0.95 strategy is bad. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## The real stuff" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### calculate gains from my strategy" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"my_gains = await strategy_return_for_qty_one(\n", | ||
" strategy=strategy, env=environment, start_date=datetime.strptime(date, \"%Y-%m-%d\")\n", | ||
")\n", | ||
"my_gains" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"scanned = await TrendingTickers.load_by_date_and_env(env=environment, start_date=datetime.strptime(date, \"%Y-%m-%d\"))\n", | ||
"scanned['hold'] = timedelta(0)\n", | ||
"print(f\"loaded {len(scanned)} entries\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df = await TradeAnalysis.load(environment, datetime.strptime(date, \"%Y-%m-%d\"))\n", | ||
"df = df.loc[df.algo_name == strategy]\n", | ||
"print(f\"loaded {len(df)} entries\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for i, row in scanned.iterrows():\n", | ||
" hold_time = df.loc[\n", | ||
" (df.batch_id == row.batch_id) & (df.symbol == row.symbol)\n", | ||
" ].hold.sum()\n", | ||
" scanned.loc[scanned.index == i, \"hold\"] = (\n", | ||
" hold_time if not pd.isnull(hold_time) else timedelta(0)\n", | ||
" )\n", | ||
" duration = timedelta(minutes=120) - (\n", | ||
" row.create_tstamp.to_pydatetime()\n", | ||
" - row.create_tstamp.to_pydatetime().replace(\n", | ||
" hour=14, minute=30, second=0, microsecond=0\n", | ||
" )\n", | ||
" )\n", | ||
" scanned.loc[scanned.index == i, \"duration\"] = (\n", | ||
" duration if duration >= timedelta(days=0) else pd.NaT\n", | ||
" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"scanned=scanned.dropna(how='any',axis=0) \n", | ||
"scanned['delta'] = scanned.duration-scanned.hold" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"prob_buy = 1.0 * len(df) / (scanned.delta.sum().total_seconds() // 60)\n", | ||
"prob_buy" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"prob_sell = 1.0 * len(df) / (scanned.hold.sum().total_seconds() // 60)\n", | ||
"prob_sell" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def gen_rand(prob:float) -> int:\n", | ||
" return np.random.choice([1,0],1,p=[prob,1-prob])[-1]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"utc = timezone(\"UTC\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"minute_history = {}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def load_data(symbol: str, start: datetime, end: datetime) -> pd.DataFrame:\n", | ||
" print(\"load\", symbol, start)\n", | ||
" retry = 5\n", | ||
" while retry > 0:\n", | ||
" try:\n", | ||
" payload = api.polygon.historic_agg_v2(\n", | ||
" symbol,\n", | ||
" 1,\n", | ||
" \"minute\",\n", | ||
" _from=str(start),\n", | ||
" to=str(end),\n", | ||
" ).df\n", | ||
" break\n", | ||
" except Exception:\n", | ||
" retry -= 1\n", | ||
" continue\n", | ||
" \n", | ||
" return payload\n", | ||
"\n", | ||
"\n", | ||
"def calculate_random_strategy():\n", | ||
" gain = 0\n", | ||
" for i, row in scanned.iterrows():\n", | ||
" b = row.create_tstamp.replace(second=0, microsecond=0)\n", | ||
" end_buy = b.replace(hour=16, minute=30, second=0, microsecond=0)\n", | ||
" end_sell = b.replace(hour=21, minute=0, second=0, microsecond=0)\n", | ||
" while b < end_buy:\n", | ||
" to_buy = False\n", | ||
" if gen_rand(prob_buy):\n", | ||
" # print(f\"found buy {row.symbol} {b}\")\n", | ||
" to_buy = True\n", | ||
"\n", | ||
" b += timedelta(minutes=1)\n", | ||
" if to_buy:\n", | ||
" s = b\n", | ||
" while s < end_sell:\n", | ||
" if gen_rand(prob_sell):\n", | ||
" break\n", | ||
" s += timedelta(minutes=1)\n", | ||
" \n", | ||
" if row.symbol not in minute_history:\n", | ||
" minute_history[row.symbol] = load_data(row.symbol, b, s)\n", | ||
" else:\n", | ||
" try:\n", | ||
" _ = minute_history[row.symbol].index.get_loc(\n", | ||
" str(pd.Timestamp(b, tz=utc).tz_convert(\"US/Eastern\")),\n", | ||
" method=\"pad\",\n", | ||
" tolerance=None,\n", | ||
" )\n", | ||
" except Exception as e:\n", | ||
" new_data = load_data(row.symbol, b, s)\n", | ||
"\n", | ||
" minute_history[row.symbol] = (\n", | ||
" minute_history[row.symbol].append(new_data)\n", | ||
" if minute_history[row.symbol].index[0] < new_data.index[0]\n", | ||
" else new_data.append(minute_history[row.symbol])\n", | ||
" )\n", | ||
"\n", | ||
" b_index = minute_history[row.symbol].index.get_loc(\n", | ||
" str(pd.Timestamp(b, tz=utc).tz_convert(\"US/Eastern\")),\n", | ||
" method=\"pad\",\n", | ||
" tolerance=None,\n", | ||
" )\n", | ||
" s_index = minute_history[row.symbol].index.get_loc(\n", | ||
" str(pd.Timestamp(s, tz=utc).tz_convert(\"US/Eastern\")),\n", | ||
" method=\"pad\",\n", | ||
" tolerance=None,\n", | ||
" )\n", | ||
" gain += (\n", | ||
" minute_history[row.symbol].iloc[s_index].close\n", | ||
" - minute_history[row.symbol].iloc[b_index].close\n", | ||
" )\n", | ||
"\n", | ||
" b = s\n", | ||
" return gain" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
" " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"i_win = 0\n", | ||
"for i in range (10000):\n", | ||
" random_gains = calculate_random_strategy()\n", | ||
" if my_gains > random_gains:\n", | ||
" i_win += 1\n", | ||
" \n", | ||
" print(i+1, i_win/(i+1), random_gains)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.0" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
__version__ = "0.0.81" | ||
__version__ = "0.0.82" |