Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feature: Factory methods for AHS AtomArrangments by AbdullahKazi500 #989

217 changes: 217 additions & 0 deletions AHS.py
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please remove this file, and make all edits to the atom_arrangement.py module and the test_atom_arrangement.py module.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi @peterkomar-aws replaced the content of the entire file with this now going through the comments

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The individual file was deleted

Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.

from __future__ import annotations
from collections.abc import Iterator
from dataclasses import dataclass
from decimal import Decimal
from enum import Enum
from numbers import Number
from typing import Union, Tuple, List
import numpy as np
from shapely.geometry import Point, Polygon

# Define SiteType enum
class SiteType(Enum):
VACANT = "Vacant"
FILLED = "Filled"

@dataclass
class AtomArrangementItem:
"""Represents an item (coordinate and metadata) in an atom arrangement."""
coordinate: Tuple[Number, Number]
site_type: SiteType

def _validate_coordinate(self) -> None:
if len(self.coordinate) != 2:
raise ValueError(f"{self.coordinate} must be of length 2")
for idx, num in enumerate(self.coordinate):
if not isinstance(num, Number):
raise TypeError(f"{num} at position {idx} must be a number")

def _validate_site_type(self) -> None:
allowed_site_types = {SiteType.FILLED, SiteType.VACANT}
if self.site_type not in allowed_site_types:
raise ValueError(f"{self.site_type} must be one of {allowed_site_types}")

def __post_init__(self) -> None:
self._validate_coordinate()
self._validate_site_type()

class AtomArrangement:
def __init__(self):
"""Represents a set of coordinates that can be used as a register to an AnalogHamiltonianSimulation."""
self._sites = []

def add(self, coordinate: Union[Tuple[Number, Number], np.ndarray], site_type: SiteType = SiteType.FILLED) -> "AtomArrangement":
"""Add a coordinate to the atom arrangement.
Args:
coordinate (Union[tuple[Number, Number], ndarray]): The coordinate of the atom (in meters).
site_type (SiteType): The type of site. Optional. Default is FILLED.
Returns:
AtomArrangement: returns self (to allow for chaining).
"""
self._sites.append(AtomArrangementItem(tuple(coordinate), site_type))
return self

def coordinate_list(self, coordinate_index: Number) -> List[Number]:
"""Returns all the coordinates at the given index.
Args:
coordinate_index (Number): The index to get for each coordinate.
Returns:
List[Number]: The list of coordinates at the given index.
Example:
To get a list of all x-coordinates: coordinate_list(0)
To get a list of all y-coordinates: coordinate_list(1)
"""
return [site.coordinate[coordinate_index] for site in self._sites]

def __iter__(self) -> Iterator:
return iter(self._sites)

def __len__(self):
return len(self._sites)

def discretize(self, properties: 'DiscretizationProperties') -> "AtomArrangement":
"""Creates a discretized version of the atom arrangement, rounding all site coordinates to the closest multiple of the resolution. The types of the sites are unchanged.
Args:
properties (DiscretizationProperties): Capabilities of a device that represent the
resolution with which the device can implement the parameters.
Raises:
DiscretizationError: If unable to discretize the program.
Returns:
AtomArrangement: A new discretized atom arrangement.
"""
try:
position_res = properties.lattice.geometry.positionResolution
discretized_arrangement = AtomArrangement()
for site in self._sites:
new_coordinates = tuple(
round(Decimal(c) / position_res) * position_res for c in site.coordinate
)
discretized_arrangement.add(new_coordinates, site.site_type)
return discretized_arrangement
except Exception as e:
raise DiscretizationError(f"Failed to discretize register {e}") from e

# Factory methods for lattice structures
@classmethod
def from_square_lattice(cls, lattice_constant: float, canvas_boundary_points: List[Tuple[float, float]]) -> "AtomArrangement":
"""Create an atom arrangement with a square lattice."""
arrangement = cls()
x_min, y_min = canvas_boundary_points[0]
x_max, y_max = canvas_boundary_points[2]
x_range = np.arange(x_min, x_max, lattice_constant)
y_range = np.arange(y_min, y_max, lattice_constant)
for x in x_range:
for y in y_range:
arrangement.add((x, y))
return arrangement

@classmethod
def from_rectangular_lattice(cls, dx: float, dy: float, canvas_boundary_points: List[Tuple[float, float]]) -> "AtomArrangement":
"""Create an atom arrangement with a rectangular lattice."""
arrangement = cls()
x_min, y_min = canvas_boundary_points[0]
x_max, y_max = canvas_boundary_points[2]
for x in np.arange(x_min, x_max, dx):
for y in np.arange(y_min, y_max, dy):
arrangement.add((x, y))
return arrangement

@classmethod
def from_decorated_bravais_lattice(cls, lattice_vectors: List[Tuple[float, float]], decoration_points: List[Tuple[float, float]], canvas_boundary_points: List[Tuple[float, float]]) -> "AtomArrangement":
arrangement = cls()
vec_a, vec_b = np.array(lattice_vectors[0]), np.array(lattice_vectors[1])
x_min, y_min = canvas_boundary_points[0]
x_max, y_max = canvas_boundary_points[2]
i = 0
while (origin := i * vec_a)[0] < x_max:
j = 0
while (point := origin + j * vec_b)[1] < y_max:
if x_min <= point[0] <= x_max and y_min <= point[1] <= y_max:
for dp in decoration_points:
decorated_point = point + np.array(dp)
if x_min <= decorated_point[0] <= x_max and y_min <= decorated_point[1] <= y_max:
arrangement.add(tuple(decorated_point))
j += 1
i += 1
return arrangement

@classmethod
def from_honeycomb_lattice(cls, lattice_constant: float, canvas_boundary_points: List[Tuple[float, float]]) -> "AtomArrangement":
a1 = (lattice_constant, 0)
a2 = (lattice_constant / 2, lattice_constant * np.sqrt(3) / 2)
decoration_points = [(0, 0), (lattice_constant / 2, lattice_constant * np.sqrt(3) / 6)]
return cls.from_decorated_bravais_lattice([a1, a2], decoration_points, canvas_boundary_points)

@classmethod
def from_bravais_lattice(cls, lattice_vectors: List[Tuple[float, float]], canvas_boundary_points: List[Tuple[float, float]]) -> "AtomArrangement":
return cls.from_decorated_bravais_lattice(lattice_vectors, [(0, 0)], canvas_boundary_points)

@dataclass
class LatticeGeometry:
positionResolution: Decimal

@dataclass
class DiscretizationProperties:
lattice: LatticeGeometry

class DiscretizationError(Exception):
pass

# RectangularCanvas class
class RectangularCanvas:
def __init__(self, bottom_left: Tuple[float, float], top_right: Tuple[float, float]):
self.bottom_left = bottom_left
self.top_right = top_right

def is_within(self, point: Tuple[float, float]) -> bool:
x_min, y_min = self.bottom_left
x_max, y_max = self.top_right
x, y = point
return x_min <= x <= x_max and y_min <= y <= y_max

# Example usage
if __name__ == "__main__":
canvas_boundary_points = [(0, 0), (7.5e-5, 0), (7.5e-5, 7.5e-5), (0, 7.5e-5)]

# Create lattice structures
square_lattice = AtomArrangement.from_square_lattice(4e-6, canvas_boundary_points)
rectangular_lattice = AtomArrangement.from_rectangular_lattice(3e-6, 2e-6, canvas_boundary_points)
decorated_bravais_lattice = AtomArrangement.from_decorated_bravais_lattice([(4e-6, 0), (0, 4e-6)], [(1e-6, 1e-6)], canvas_boundary_points)
honeycomb_lattice = AtomArrangement.from_honeycomb_lattice(4e-6, canvas_boundary_points)
bravais_lattice = AtomArrangement.from_bravais_lattice([(4e-6, 0), (0, 4e-6)], canvas_boundary_points)

# Validation function
def validate_lattice(arrangement, lattice_type):
"""Validate the lattice structure."""
num_sites = len(arrangement)
min_distance = None
for i, atom1 in enumerate(arrangement):
for j, atom2 in enumerate(arrangement):
if i != j:
distance = np.linalg.norm(np.array(atom1.coordinate) - np.array(atom2.coordinate))
if min_distance is None or distance < min_distance:
min_distance = distance
print(f"Lattice Type: {lattice_type}")
print(f"Number of lattice points: {num_sites}")
print(f"Minimum distance between lattice points: {min_distance:.2e} meters")
print("-" * 40)

# Validate lattice structures
validate_lattice(square_lattice, "Square Lattice")
validate_lattice(rectangular_lattice, "Rectangular Lattice")
validate_lattice(decorated_bravais_lattice, "Decorated Bravais Lattice")
validate_lattice(honeycomb_lattice, "Honeycomb Lattice")
validate_lattice(bravais_lattice, "Bravais Lattice")
Loading