The goal of this repository is:
- To keep on track of state-of-the-art (SoTA) and new CNN architectures
- To see the comparison of famous CNN models at a glance (accuracy, parameters, speed ...)
- To access their research papers and implementations on different frameworks
(This repository will be updated regularly.)
CNN model comparison table on the ImageNet classification results, reference paper and implementations.
Model | Detail | Input size | Parameters | Mult-Adds | FLOPS | Depth | Top-1 Acc | Top-5 Acc | Paper | TF | Keras | Pytorch | Caffe | Torch | MXNet |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AmoebaNet-B | (N=6, F=228) | 331x331⁵ | 155.3M⁵ | 41.1B⁵ | 83.10⁵ | 96.30⁵ | Paper | TF | - | - | - | - | - | ||
PNASNet-5_Large_331 | (N=4, F=216) | 331x331⁵ | 86.1M⁵ | 25.0B⁵ | 82.90⁵ | 96.20⁵ | Paper | TF | - | - | - | - | - | ||
AmoebaNet-B | (N=6, F=190) | 331x331⁵ | 86.7M⁵ | 23.1B⁵ | 82.80⁵ | 96.10⁵ | Paper | TF | - | - | - | - | - | ||
SENet-154 | 320x320⁵ | 145.8M⁵ | 42.3B⁵ | 82.70⁵ | 96.20⁵ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
NASNet-A_Large_331 | (N=6, F=168) | 331x331⁵ | 88.9M⁵ | 23.8B⁵ | 82.70⁵ | 96.20⁵ | Paper | TF | Keras | Pytorch | - | - | - | ||
AmoebaNet-B | (N=6, F=190) | 331x331⁵ | 84.0M⁵ | 22.3B⁵ | 82.30⁵ | 96.10⁵ | Paper | TF | - | - | - | - | - | ||
Dual-Path-Net-131 | 320x320⁵ | 79.5M⁵ | 32.0B⁵ | 81.50⁵ | 95.80⁵ | Paper | - | Keras | Pytorch | Caffe | - | MXNet | |||
PolyNet | 331x331⁵ | 92M⁵ | 34.7B⁵ | 81.30⁵ | 95.80⁵ | Paper | - | - | Pytorch | Caffe | - | - | |||
ResNeXt-101 | (64x4d) | 320x320⁵ | 83.6M⁵ | 31.5B⁵ | 80.90⁵ | 95.60⁵ | Paper | TF | Keras | Pytorch | Caffe | Torch | - | ||
PyramidNet-200 | α=300 | 320x320⁷ | 116.4M⁷ | 80.80⁷ | 95.30⁷ | Paper | TF | - | Pytorch | Caffe | Torch | - | |||
PyramidNet-200 | α=300 | 320x320⁷ | 62.1M⁷ | 80.50⁷ | 95.20⁷ | Paper | TF | - | Pytorch | Caffe | Torch | - | |||
Inception-ResNet-v2 | 299x299¹ | 55.8M² | 11.75G⁴ | 572² | 80.40¹ | 95.30¹ | Paper | TF | Keras | - | Caffe | - | - | ||
Inception-ResNet-v2+SE | 299X299⁴ | 11.76G⁴ | 80.20⁴ | 95.21⁴ | Paper | TF | - | Pytorch | Caffe | - | - | ||||
Inception V4 | 299x299¹ | 46M¹ | 80.20¹ | 95.20¹ | Paper | TF | Keras | Pytorch | - | - | - | ||||
ResNet V2 200 | 320x320 | 64.7M | 15G | 79.90¹ | 95.20¹ | Paper | TF | Keras | - | Caffe | - | - | |||
bl-ResNet-152@256 | α=2, β=4 | 256x256⁸ | 57.36M⁸ | 6.58G⁸ | 79.66⁸ | - | Paper | - | - | - | - | - | - | ||
bl-ResNeXt-101@256 | α=2, β=4 | 256x256⁸ | 41.51M⁸ | 5.33G⁸ | 79.59⁸ | - | Paper | - | - | - | - | - | - | ||
bl-ResNet-152 | α=2, β=2 | 224x224⁸ | 59.81M⁸ | 5.64G⁸ | 79.04⁸ | - | Paper | - | - | - | - | - | - | ||
Xception | 299x299² | 23M² | 126² | 79.00² | 94.50² | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
bl-ResNet-101@256 | α=2, β=4 | 256x256⁸ | 41.85M⁸ | 5.08G⁸ | 78.96⁸ | - | Paper | - | - | - | - | - | - | ||
ResNeXt-101+CBAM | (32x4d) | 224x224³ | 49M³ | 7.519G³ | 78.93³ | 94.41³ | Paper | TF | Keras | - | - | - | - | ||
bl-ResNet-152 | α=2, β=4 | 224x224⁸ | 57.36M⁸ | 5.04G⁸ | 78.84⁸ | - | Paper | - | - | - | - | - | - | ||
ResNeXt-101+SE | (32x4d) | 224x224³ | 49M³ | 7.512G³ | 78.83³ | 94.34³ | Paper | TF | - | - | Caffe | - | - | ||
bl-ResNeXt-101 | α=2, β=4 | 224x224⁸ | 41.51M⁸ | 4.08G⁸ | 78.80⁸ | - | Paper | - | - | - | - | - | - | ||
bl-ResNeXt-50@256 | α=2, β=4 | 256x256⁸ | 26.19M⁸ | 3.95G⁸ | 78.77⁸ | - | Paper | - | - | - | - | - | - | ||
bl-ResNet-101 | α=2, β=2 | 224x224⁸ | 43.39M⁸ | 4.27G⁸ | 78.60⁸ | - | Paper | - | - | - | - | - | - | ||
ResNet101+CBAM | 224x224³ | 49M³ | 7.581G³ | 78.49³ | 94.31³ | Paper | TF | Keras | - | - | - | - | |||
ResNeXt-101 | (32x4d) | 224x224³ | 44.2M³ | 7.508G³ | 78.46³ | 94.25³ | Paper | TF | Keras | Pytorch | Caffe | Torch | - | ||
bl-ResNet-101 | α=2, β=4 | 224x224⁸ | 41.85M⁸ | 3.89G⁸ | 78.20⁸ | - | Paper | - | - | - | - | - | - | ||
ResNeXt50+SE | (32x4d) | 224x224³ | 27.6M³ | 3.771G³ | 78.09³ | 93.96³ | Paper | TF | - | - | Caffe | - | - | ||
ResNeXt50+CBAM | (32x4d) | 224x224³ | 27.6M³ | 3.774G³ | 78.08³ | 94.09³ | Paper | TF | Keras | - | - | - | - | ||
bl-ResNeXt-50 | α=2, β=4 | 224x224⁸ | 26.19M⁸ | 3.03G⁸ | 78.00⁸ | - | Paper | - | - | - | - | - | - | ||
Inception V3 | 299x299¹ | 23.8M² | 159² | 78.00¹ | 93.90¹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
ResNet V2 152 | 299x299¹ | 77.80¹ | 94.10¹ | Paper | TF | Keras | - | Caffe | - | - | |||||
ResNet101+SE | 224x224³ | 49M³ | 7.575G³ | 77.65³ | 93.81³ | Paper | TF | - | Pytorch | Caffe | - | - | |||
ResNet50+CBAM | 224x224³ | 28M³ | 3.864G³ | 77.34³ | 93.69³ | Paper | TF | Keras | - | - | - | - | |||
bl-ResNet-50 | α=2, β=4 | 224x224⁸ | 26.69M⁸ | 2.85G⁸ | 77.31⁸ | - | Paper | - | - | - | - | - | - | ||
ResNeXt50 | (32x4d) | 224x224³ | 25M³ | 3.768G³ | 77.15³ | 94.25³ | Paper | TF | Keras | Pytorch | Caffe | Torch | - | ||
DenseNet201 | 224x224² | 20M² | 201² | 77.00² | 93.30² | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
ResNet V2 101 | 299x299¹ | 77.00¹ | 93.70¹ | Paper | TF | Keras | - | Caffe | - | - | |||||
ResNet50+SE | 224x224³ | 28M³ | 3.86G³ | 76.86³ | 93.30³ | Paper | TF | - | Pytorch | Caffe | - | - | |||
bl-ResNet-50 | α=4, β=4 | 224x224⁸ | 26.24M⁸ | 2.48G⁸ | 76.85⁸ | - | Paper | - | - | - | - | - | - | ||
ResNet V1 152 | 224x224¹ | 60M | 11.3G⁴ | 517 | 76.80¹ | 93.20¹ | Paper | TF | Keras | Pytorch | Caffe | Torch | - | ||
ResNet V1 101 | 224x224¹ | 45M³ | 7.57G³ | 76.40¹ | 92.90¹ | Paper | TF | Keras | Pytorch | Caffe | Torch | - | |||
MnasNet-92+SE | 224x224⁹ | 5.1M⁹ | 391M⁹ | 76.13⁹ | 92.85⁹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
DenseNet169 | 224x224² | 14M² | 169² | 75.90² | 92.80² | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
BN-Inception+SE | 224x224⁴ | 2.04G⁴ | 75.77⁴ | 92.86⁴ | Paper | TF | - | - | Caffe | - | - | ||||
ResNet V2 50 | 299x299¹ | 75.60¹ | 92.80¹ | Paper | TF | Keras | - | Caffe | - | - | |||||
MnasNet+SE | 224x224⁹ | 4.7M⁹ | 319M⁹ | 75.42⁹ | 92.51⁹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
ResNet V1 50 | 224x224¹ | 25.6M² | 3.858G³ | 168² | 75.20¹ | 92.20¹ | Paper | TF | Keras | Pytorch | Caffe | Torch | - | ||
WideResNet18+CBAM | widen=2.0 | 224x224³ | 45.97M³ | 6.697G³ | 75.16³ | 92.37³ | Paper | - | - | - | - | - | - | ||
WideResNet18+SE | widen=2.0 | 224x224³ | 45.97M³ | 6.696G³ | 75.07³ | 92.35³ | Paper | - | - | - | Caffe | - | - | ||
MobileNet_v2 | α=1.4 | 224x224¹ | 6M | 74.90¹ | 92.50¹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
MnasNet-92 | 224x224⁹ | 4.4M⁹ | 388M⁹ | 74.79⁹ | 92.05⁹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
MnasNet-65+SE | 224x224⁹ | 4.1M⁹ | 272M⁹ | 74.62⁹ | 91.93⁹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
BN-Inception | 224x224⁴ | 2.03G⁴ | 74.62⁴ | 92.21⁴ | Paper | - | - | - | Caffe | - | - | ||||
AmoebaNet-A | 224x224⁹ | 5.1M⁹ | 555M⁹ | 74.50⁹ | 92.00⁹ | Paper | TF | - | - | - | - | - | |||
DenseNet121 | 224x224² | 8M² | 121² | 74.50² | 91.80² | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
WideResNet18 | widen=2.0 | 224x224³ | 45.62M³ | 6.696G³ | 74.37³ | 91.80³ | Paper | TF | Keras | Pytorch | Caffe | - | - | ||
PNASNet-5_Mobile | 224x224⁹ | 5.1M⁹ | 588M⁹ | 74.20⁹ | 91.90⁹ | Paper | TF | - | - | - | - | - | |||
ResNet34+CBAM | 224x224³ | 22M³ | 3.665G³ | 74.01³ | 91.76³ | Paper | TF | Keras | - | - | - | - | |||
MnasNet | 224x224⁹ | 4.2M⁹ | 317M⁹ | 74.00⁹ | 91.78⁹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
NASNet-A_Mobile_224 | 224x224¹ | 74.00¹ | 91.60¹ | Paper | TF | Keras | Pytorch | - | - | - | |||||
WideResNet18+CBAM | widen=1.5 | 224x224³ | 26.08M³ | 3.868G³ | 73.90³ | 91.57³ | Paper | - | - | - | - | - | - | ||
Inception V2 | 224x224¹ | 73.90¹ | 91.80¹ | Paper | TF | - | Pytorch | - | - | - | |||||
ResNet34+SE | 224x224³ | 22M³ | 3.664G³ | 73.87³ | 91.65³ | Paper | TF | - | Pytorch | Caffe | - | - | |||
CondenseNet | G=C=8 | 224x224⁹ | 4.8M⁹ | 529M⁹ | 73.80⁹ | 91.70⁹ | Paper | TF | - | Pytorch | - | - | - | ||
WideResNet18+SE | widen=1.5 | 224x224³ | 26.07M³ | 3.867G³ | 73.79³ | 91.53³ | Paper | - | - | - | Caffe | - | - | ||
ShuffleNet | x2 | 224x224⁹ | 5.4M⁹ | 524M⁹ | 73.70⁹ | - | Paper | TF | Keras | Pytorch | Caffe | - | - | ||
ResNet34 | 224x224³ | 21.8M³ | 3.664G³ | 73.31³ | 91.40³ | Paper | TF | - | Pytorch | Caffe | Torch | - | |||
WideResNet18 | widen=1.5 | 224x224³ | 25.88M³ | 3.866G³ | 73.15³ | 91.12³ | Paper | TF | Keras | Pytorch | Caffe | - | - | ||
DARTS | 224x224⁹ | 4.9M⁹ | 595M⁹ | 73.10⁹ | 91.00⁹ | Paper | - | - | Pytorch | - | - | - | |||
MnasNet-65 | 224x224⁹ | 3.6M⁹ | 270M⁹ | 73.02⁹ | 91.14⁹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
MobileNet_v2 | α=1.0 | 224x224¹ | 3.47M | 71.90¹ | 91.00¹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
ShuffleNet | 1.5 | 224x224⁹ | 3.4M⁹ | 292M⁹ | 71.50⁹ | - | Paper | TF | Keras | Pytorch | Caffe | - | - | ||
VGG 16 | 224x224¹ | 138M² | 15.47⁴ | 23² | 71.50¹ | 89.80¹ | Paper | TF | Keras | Pytorch | Caffe | - | - | ||
VGG 19 | 224x224¹ | 143M² | 26² | 71.10¹ | 89.80¹ | Paper | TF | Keras | Pytorch | Caffe | - | - | |||
CondenseNet | G=C=4 | 224x224⁹ | 2.9M⁹ | 274M⁹ | 71.00⁹ | 90.00⁹ | Paper | TF | - | Pytorch | - | - | - | ||
MobileNet_v1+CBAM | α=1.0 | 224x224³ | 5.07M³ | 0.576G³ | 70.99³ | 90.01³ | Paper | - | Keras | - | - | - | - | ||
MobileNet_v1 | α=1.0 | 224x224¹ | 70.90¹ | 89.90¹ | Paper | TF | Keras | Pytorch | Caffe | - | - | ||||
ResNet18+CBAM | 224x224³ | 11.8M³ | 1.815G³ | 70.73³ | 89.91³ | Paper | TF | Keras | - | - | - | - | |||
ResNet18+SE | 224x224³ | 11.8M³ | 1.814G³ | 70.59³ | 89.78³ | Paper | TF | - | Pytorch | Caffe | - | - | |||
ResNet18 | 224x224³ | 11.7M³ | 1.814G³ | 70.40³ | 89.45³ | Paper | TF | - | Pytorch | Caffe | Torch | - | |||
MobileNet_v1+SE | α=1.0 | 224x224³ | 5.07M³ | 0.570G³ | 70.03³ | 89.37³ | Paper | - | - | - | Caffe | - | - | ||
Inception V1 | 224x224¹ | 69.80¹ | 89.60¹ | Paper | TF | Keras | Pytorch | - | - | - | |||||
MobileNet_v1 | α=1.0 | 224x224³ | 4.23M³ | 0.569G³ | 68.61³ | 88.49³ | Paper | TF | Keras | Pytorch | Caffe | - | - | ||
MobileNet_v1+CBAM | α=0.7 | 224x224³ | 2.71M³ | 0.289G³ | 68.49³ | 88.52³ | Paper | - | Keras | - | - | - | - | ||
ShuffleNet+SE | 1x(g=3) | 224x224⁴ | 2.4M⁴ | 0.142G⁴ | 68.30⁴ | 88.30⁴ | Paper | - | - | - | Caffe | - | - | ||
SqueezeNext | 224x224⁹ | 3.2M⁹ | 708M⁹ | 67.50⁹ | 88.20⁹ | Paper | TF | - | Pytorch | Caffe | - | - | |||
MobileNet_v1+SE | α=0.7 | 224x224³ | 2.71M³ | 0.283G³ | 67.50³ | 87.51³ | Paper | - | - | - | Caffe | - | - | ||
ShuffleNet | 1x(g=3) | 224x224⁴ | 1.8M⁴ | 0.14G⁴ | 66.10⁴ | 86.40⁴ | Paper | TF | Keras | Pytorch | Caffe | - | - | ||
MobileNet_v1 | α=0.7 | 224x224³ | 2.3M³ | 0.283G³ | 65.14³ | 86.31³ | Paper | TF | Keras | Pytorch | Caffe | - | - | ||
MobileNet_v1 | α=0.5 | 160x160¹ | 59.10¹ | 81.90¹ | Paper | TF | Keras | Pytorch | Caffe | - | - | ||||
MobileNet_v1 | α=0.25 | 128x128¹ | 41.50¹ | 66.30¹ | Paper | TF | Keras | Pytorch | Caffe | - | - |
- Mult-Adds: The number of multiply-add operations
- FLOPS: The floating point operations
Superscript numbers on each value indicate the reference number of each value from.
- TF-Slim
- Keras: Applications
- CBAM: Convolutional Block Attention Module
- Squeeze-and-Excitation Networks
- Progressive Neural Architecture Search
- Residual Attention Network for Image Classification
- Deep Pyramidal Residual Networks
- Big-Little Net: An Efficient Multi-Scale Feature Representation for Visual and Speech Recognition
- MnasNet: Platform-Aware Neural Architecture Search for Mobile
Check the other good resources about CNN models
- Caffe-model
- TensorNets
- DeepDetect : Open Source Deep Learning Server & API
- Pretrained models for Pytorch
- Netscope CNN Analyzer
- Memory consumption and FLOP count
Byung Soo Ko / [email protected]