Skip to content

alyato/CNN-models-comparison

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 

Repository files navigation

CNN-models-comparison

The goal of this repository is:

  • To keep on track of state-of-the-art (SoTA) and new CNN architectures
  • To see the comparison of famous CNN models at a glance (accuracy, parameters, speed ...)
  • To access their research papers and implementations on different frameworks

(This repository will be updated regularly.)

Comparison Table

CNN model comparison table on the ImageNet classification results, reference paper and implementations.

Model Detail Input size Parameters Mult-Adds FLOPS Depth Top-1 Acc Top-5 Acc Paper TF Keras Pytorch Caffe Torch MXNet
AmoebaNet-B (N=6, F=228) 331x331⁵ 155.3M⁵ 41.1B⁵     83.10⁵ 96.30⁵ Paper TF - - - - -
PNASNet-5_Large_331 (N=4, F=216) 331x331⁵ 86.1M⁵ 25.0B⁵     82.90⁵ 96.20⁵ Paper TF - - - - -
AmoebaNet-B (N=6, F=190) 331x331⁵ 86.7M⁵ 23.1B⁵     82.80⁵ 96.10⁵ Paper TF - - - - -
SENet-154   320x320⁵ 145.8M⁵ 42.3B⁵     82.70⁵ 96.20⁵ Paper TF Keras Pytorch Caffe - -
NASNet-A_Large_331 (N=6, F=168) 331x331⁵ 88.9M⁵ 23.8B⁵     82.70⁵ 96.20⁵ Paper TF Keras Pytorch - - -
AmoebaNet-B (N=6, F=190) 331x331⁵ 84.0M⁵ 22.3B⁵     82.30⁵ 96.10⁵ Paper TF - - - - -
Dual-Path-Net-131   320x320⁵ 79.5M⁵ 32.0B⁵     81.50⁵ 95.80⁵ Paper - Keras Pytorch Caffe - MXNet
PolyNet   331x331⁵ 92M⁵ 34.7B⁵     81.30⁵ 95.80⁵ Paper - - Pytorch Caffe - -
ResNeXt-101 (64x4d) 320x320⁵ 83.6M⁵ 31.5B⁵     80.90⁵ 95.60⁵ Paper TF Keras Pytorch Caffe Torch -
PyramidNet-200 α=300 320x320⁷ 116.4M⁷       80.80⁷ 95.30⁷ Paper TF - Pytorch Caffe Torch -
PyramidNet-200 α=300 320x320⁷ 62.1M⁷       80.50⁷ 95.20⁷ Paper TF - Pytorch Caffe Torch -
Inception-ResNet-v2   299x299¹ 55.8M²   11.75G⁴ 572² 80.40¹ 95.30¹ Paper TF Keras - Caffe - -
Inception-ResNet-v2+SE   299X299⁴     11.76G⁴   80.20⁴ 95.21⁴ Paper TF - Pytorch Caffe - -
Inception V4   299x299¹ 46M¹       80.20¹ 95.20¹ Paper TF Keras Pytorch - - -
ResNet V2 200   320x320 64.7M   15G   79.90¹ 95.20¹ Paper TF Keras - Caffe - -
bl-ResNet-152@256 α=2, β=4 256x256⁸ 57.36M⁸   6.58G⁸   79.66⁸ - Paper - - - - - -
bl-ResNeXt-101@256 α=2, β=4 256x256⁸ 41.51M⁸   5.33G⁸   79.59⁸ - Paper - - - - - -
bl-ResNet-152 α=2, β=2 224x224⁸ 59.81M⁸   5.64G⁸   79.04⁸ - Paper - - - - - -
Xception   299x299² 23M²     126² 79.00² 94.50² Paper TF Keras Pytorch Caffe - -
bl-ResNet-101@256 α=2, β=4 256x256⁸ 41.85M⁸   5.08G⁸   78.96⁸ - Paper - - - - - -
ResNeXt-101+CBAM (32x4d) 224x224³ 49M³   7.519G³   78.93³ 94.41³ Paper TF Keras - - - -
bl-ResNet-152 α=2, β=4 224x224⁸ 57.36M⁸   5.04G⁸   78.84⁸ - Paper - - - - - -
ResNeXt-101+SE (32x4d) 224x224³ 49M³   7.512G³   78.83³ 94.34³ Paper TF - - Caffe - -
bl-ResNeXt-101 α=2, β=4 224x224⁸ 41.51M⁸   4.08G⁸   78.80⁸ - Paper - - - - - -
bl-ResNeXt-50@256 α=2, β=4 256x256⁸ 26.19M⁸   3.95G⁸   78.77⁸ - Paper - - - - - -
bl-ResNet-101 α=2, β=2 224x224⁸ 43.39M⁸   4.27G⁸   78.60⁸ - Paper - - - - - -
ResNet101+CBAM   224x224³ 49M³   7.581G³   78.49³ 94.31³ Paper TF Keras - - - -
ResNeXt-101 (32x4d) 224x224³ 44.2M³   7.508G³   78.46³ 94.25³ Paper TF Keras Pytorch Caffe Torch -
bl-ResNet-101 α=2, β=4 224x224⁸ 41.85M⁸   3.89G⁸   78.20⁸ - Paper - - - - - -
ResNeXt50+SE (32x4d) 224x224³ 27.6M³   3.771G³   78.09³ 93.96³ Paper TF - - Caffe - -
ResNeXt50+CBAM (32x4d) 224x224³ 27.6M³   3.774G³   78.08³ 94.09³ Paper TF Keras - - - -
bl-ResNeXt-50 α=2, β=4 224x224⁸ 26.19M⁸   3.03G⁸   78.00⁸ - Paper - - - - - -
Inception V3   299x299¹ 23.8M²     159² 78.00¹ 93.90¹ Paper TF Keras Pytorch Caffe - -
ResNet V2 152   299x299¹         77.80¹ 94.10¹ Paper TF Keras - Caffe - -
ResNet101+SE   224x224³ 49M³   7.575G³   77.65³ 93.81³ Paper TF - Pytorch Caffe - -
ResNet50+CBAM   224x224³ 28M³   3.864G³   77.34³ 93.69³ Paper TF Keras - - - -
bl-ResNet-50 α=2, β=4 224x224⁸ 26.69M⁸   2.85G⁸   77.31⁸ - Paper - - - - - -
ResNeXt50 (32x4d) 224x224³ 25M³   3.768G³   77.15³ 94.25³ Paper TF Keras Pytorch Caffe Torch -
DenseNet201   224x224² 20M²     201² 77.00² 93.30² Paper TF Keras Pytorch Caffe - -
ResNet V2 101   299x299¹         77.00¹ 93.70¹ Paper TF Keras - Caffe - -
ResNet50+SE   224x224³ 28M³   3.86G³   76.86³ 93.30³ Paper TF - Pytorch Caffe - -
bl-ResNet-50 α=4, β=4 224x224⁸ 26.24M⁸   2.48G⁸   76.85⁸ - Paper - - - - - -
ResNet V1 152   224x224¹ 60M   11.3G⁴ 517 76.80¹ 93.20¹ Paper TF Keras Pytorch Caffe Torch -
ResNet V1 101   224x224¹ 45M³   7.57G³   76.40¹ 92.90¹ Paper TF Keras Pytorch Caffe Torch -
MnasNet-92+SE   224x224⁹ 5.1M⁹ 391M⁹     76.13⁹ 92.85⁹ Paper TF Keras Pytorch Caffe - -
DenseNet169   224x224² 14M²     169² 75.90² 92.80² Paper TF Keras Pytorch Caffe - -
BN-Inception+SE   224x224⁴     2.04G⁴   75.77⁴ 92.86⁴ Paper TF - - Caffe - -
ResNet V2 50   299x299¹         75.60¹ 92.80¹ Paper TF Keras - Caffe - -
MnasNet+SE   224x224⁹ 4.7M⁹ 319M⁹     75.42⁹ 92.51⁹ Paper TF Keras Pytorch Caffe - -
ResNet V1 50   224x224¹ 25.6M²   3.858G³ 168² 75.20¹ 92.20¹ Paper TF Keras Pytorch Caffe Torch -
WideResNet18+CBAM widen=2.0 224x224³ 45.97M³   6.697G³   75.16³ 92.37³ Paper - - - - - -
WideResNet18+SE widen=2.0 224x224³ 45.97M³   6.696G³   75.07³ 92.35³ Paper - - - Caffe - -
MobileNet_v2 α=1.4 224x224¹ 6M       74.90¹ 92.50¹ Paper TF Keras Pytorch Caffe - -
MnasNet-92   224x224⁹ 4.4M⁹ 388M⁹     74.79⁹ 92.05⁹ Paper TF Keras Pytorch Caffe - -
MnasNet-65+SE   224x224⁹ 4.1M⁹ 272M⁹     74.62⁹ 91.93⁹ Paper TF Keras Pytorch Caffe - -
BN-Inception   224x224⁴     2.03G⁴   74.62⁴ 92.21⁴ Paper - - - Caffe - -
AmoebaNet-A   224x224⁹ 5.1M⁹ 555M⁹     74.50⁹ 92.00⁹ Paper TF - - - - -
DenseNet121   224x224² 8M²     121² 74.50² 91.80² Paper TF Keras Pytorch Caffe - -
WideResNet18 widen=2.0 224x224³ 45.62M³   6.696G³   74.37³ 91.80³ Paper TF Keras Pytorch Caffe - -
PNASNet-5_Mobile   224x224⁹ 5.1M⁹ 588M⁹     74.20⁹ 91.90⁹ Paper TF - - - - -
ResNet34+CBAM   224x224³ 22M³   3.665G³   74.01³ 91.76³ Paper TF Keras - - - -
MnasNet   224x224⁹ 4.2M⁹ 317M⁹     74.00⁹ 91.78⁹ Paper TF Keras Pytorch Caffe - -
NASNet-A_Mobile_224   224x224¹         74.00¹ 91.60¹ Paper TF Keras Pytorch - - -
WideResNet18+CBAM widen=1.5 224x224³ 26.08M³   3.868G³   73.90³ 91.57³ Paper - - - - - -
Inception V2   224x224¹         73.90¹ 91.80¹ Paper TF - Pytorch - - -
ResNet34+SE   224x224³ 22M³   3.664G³   73.87³ 91.65³ Paper TF - Pytorch Caffe - -
CondenseNet G=C=8 224x224⁹ 4.8M⁹ 529M⁹     73.80⁹ 91.70⁹ Paper TF - Pytorch - - -
WideResNet18+SE widen=1.5 224x224³ 26.07M³   3.867G³   73.79³ 91.53³ Paper - - - Caffe - -
ShuffleNet x2 224x224⁹ 5.4M⁹ 524M⁹     73.70⁹ - Paper TF Keras Pytorch Caffe - -
ResNet34   224x224³ 21.8M³   3.664G³   73.31³ 91.40³ Paper TF - Pytorch Caffe Torch -
WideResNet18 widen=1.5 224x224³ 25.88M³   3.866G³   73.15³ 91.12³ Paper TF Keras Pytorch Caffe - -
DARTS   224x224⁹ 4.9M⁹ 595M⁹     73.10⁹ 91.00⁹ Paper - - Pytorch - - -
MnasNet-65   224x224⁹ 3.6M⁹ 270M⁹     73.02⁹ 91.14⁹ Paper TF Keras Pytorch Caffe - -
MobileNet_v2 α=1.0 224x224¹ 3.47M       71.90¹ 91.00¹ Paper TF Keras Pytorch Caffe - -
ShuffleNet 1.5 224x224⁹ 3.4M⁹ 292M⁹     71.50⁹ - Paper TF Keras Pytorch Caffe - -
VGG 16   224x224¹ 138M²   15.47⁴ 23² 71.50¹ 89.80¹ Paper TF Keras Pytorch Caffe - -
VGG 19   224x224¹ 143M²     26² 71.10¹ 89.80¹ Paper TF Keras Pytorch Caffe - -
CondenseNet G=C=4 224x224⁹ 2.9M⁹ 274M⁹     71.00⁹ 90.00⁹ Paper TF - Pytorch - - -
MobileNet_v1+CBAM α=1.0 224x224³ 5.07M³   0.576G³   70.99³ 90.01³ Paper - Keras - - - -
MobileNet_v1 α=1.0 224x224¹         70.90¹ 89.90¹ Paper TF Keras Pytorch Caffe - -
ResNet18+CBAM   224x224³ 11.8M³   1.815G³   70.73³ 89.91³ Paper TF Keras - - - -
ResNet18+SE   224x224³ 11.8M³   1.814G³   70.59³ 89.78³ Paper TF - Pytorch Caffe - -
ResNet18   224x224³ 11.7M³   1.814G³   70.40³ 89.45³ Paper TF - Pytorch Caffe Torch -
MobileNet_v1+SE α=1.0 224x224³ 5.07M³   0.570G³   70.03³ 89.37³ Paper - - - Caffe - -
Inception V1   224x224¹         69.80¹ 89.60¹ Paper TF Keras Pytorch - - -
MobileNet_v1 α=1.0 224x224³ 4.23M³   0.569G³   68.61³ 88.49³ Paper TF Keras Pytorch Caffe - -
MobileNet_v1+CBAM α=0.7 224x224³ 2.71M³   0.289G³   68.49³ 88.52³ Paper - Keras - - - -
ShuffleNet+SE 1x(g=3) 224x224⁴ 2.4M⁴   0.142G⁴   68.30⁴ 88.30⁴ Paper - - - Caffe - -
SqueezeNext   224x224⁹ 3.2M⁹ 708M⁹     67.50⁹ 88.20⁹ Paper TF - Pytorch Caffe - -
MobileNet_v1+SE α=0.7 224x224³ 2.71M³   0.283G³   67.50³ 87.51³ Paper - - - Caffe - -
ShuffleNet 1x(g=3) 224x224⁴ 1.8M⁴   0.14G⁴   66.10⁴ 86.40⁴ Paper TF Keras Pytorch Caffe - -
MobileNet_v1 α=0.7 224x224³ 2.3M³   0.283G³   65.14³ 86.31³ Paper TF Keras Pytorch Caffe - -
MobileNet_v1 α=0.5 160x160¹         59.10¹ 81.90¹ Paper TF Keras Pytorch Caffe - -
MobileNet_v1 α=0.25 128x128¹         41.50¹ 66.30¹ Paper TF Keras Pytorch Caffe - -
  • Mult-Adds: The number of multiply-add operations
  • FLOPS: The floating point operations

Value References

Superscript numbers on each value indicate the reference number of each value from.

  1. TF-Slim
  2. Keras: Applications
  3. CBAM: Convolutional Block Attention Module
  4. Squeeze-and-Excitation Networks
  5. Progressive Neural Architecture Search
  6. Residual Attention Network for Image Classification
  7. Deep Pyramidal Residual Networks
  8. Big-Little Net: An Efficient Multi-Scale Feature Representation for Visual and Speech Recognition
  9. MnasNet: Platform-Aware Neural Architecture Search for Mobile

Related Resources

Check the other good resources about CNN models

Author

Byung Soo Ko / [email protected]

About

Comparison of famous convolutional neural network models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published