-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
104 changed files
with
1,102 additions
and
995 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -24,3 +24,6 @@ dist/ | |
nbdist/ | ||
|
||
### TQ ### | ||
|
||
node_modules/ | ||
_book/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,181 @@ | ||
# Rocketmq Streams (Dipper) SQL 文档 | ||
RocketMQ-Streams聚焦大数据量->高过滤->轻窗口计算的场景,核心打造轻资源,高性能优势,在资源敏感场景有很大优势,最低1core,1g可部署,做了大量的过滤优化,性能比其他大数据能有2-5倍性能提升。建议的应用场景(安全,风控,边缘计算,消息队列流计算) RocketMQ-Streams兼容Flink/Blink的sql,udf/udtf/udaf,将来我们会和flink生态做深度融合,即可以独立运行,也可以发步成flink任务,跑在flink集群,对于有flink集群的场景,即能享有轻资源优势,可以做到统一部署和运维 | ||
|
||
# 适配场景 | ||
|
||
![img.png](images/img.png) | ||
|
||
- 计算场景,适合大数据量->高过滤->轻窗口计算的场景。它不同于主流的计算引擎,需要先部署集群,写任务,发布,调优,运行这么复杂的过程,它本身就是一个lib包,基于sdk写完流任务,可以直接运行。支持大数据开发需要的计算特性:Exactly-ONCE,灵活窗口(滚动,滑动,会话),双流Join,高吞吐、低延迟、高性能。最低1core,1g可以运行。 | ||
- SQL引擎,它也是一个SQL引擎,兼容blink sql语法,支持blink udf/udtf/udaf的扩展。支持sql热升级,写完sql,通过sdk提交sql,就可以完成sql的热发布。 | ||
- ETL引擎,它也是一个etl引擎,在很多大数据场景,需要完成数据从一个源经过etl,汇聚到统一存储,里面内置了grok,正则解析等函数,可以结合sql一块完成数据etl | ||
- 开发SDK,它也是一个数据开发sdk包,里面的大多数组件都可以单独使用,如source/sink,它屏蔽了数据源,数据存储的细节,提供统一的编程接口,一套代码,切换输入输出,不需要改变代码,这块这次不展开讲 | ||
|
||
# 特点和创新 | ||
|
||
- **轻资源** | ||
|
||
无过多依赖,1core1g可以部署,按需扩展资源,增加实例即可增加并发,同样规则部署,内存资源是flink的1/24(云盾专有云规则集)。 | ||
|
||
![img_1.png](images/img_1.png) | ||
|
||
- **高性能(高过滤场景)** | ||
- 专门针对过滤做了优化,包括前置过滤指纹,同源规则自动归并,hyperscan加速,表达式指纹等 | ||
- 计算资源比flink降低(65%-95%),专有云部分规则的测试结果。 | ||
- 最好效果,一个超大规则,flink消耗3000 CU,消耗264.25 CU | ||
- **维表 JOIN(千万数据量维表支持)** | ||
我们为维表 JOIN 做了高压缩的内存设计,无java头部和对齐的开销,内存存储接近原始数据大小,千万维表加载到内存,不超过2G内存,纯内存操作,性能最大化,同时对于Mysql提供了多线程并发加载,提高加载维表的速度。 | ||
- **双流 JOIN** | ||
双流 JOIN 功能是将两条流进行关联,用来补齐流上的字段。Dipper双流 JOIN 都是基于窗口实现的,如果不指定窗口,就用默认的窗口时间,默认时间可以通过配置文件修改。 | ||
- **TopN** | ||
TopN 是统计报表和大屏非常常见的功能,主要用来实时计算排行榜。我们提供了分组 TopN 的功能。流上的 TopN 有非常多的挑战。 | ||
- **Window** | ||
支持滚动窗口(Tumble)、滑动窗口(Hop)、会话窗口(Session)以及传统数据库中的OVER窗口,支持Exactly-ONCE的能力(需要配置db)。 | ||
|
||
![img_2.png](images/img_2.png) | ||
|
||
# 消息数据结构 | ||
|
||
- 基于SQL的流计算,更像是在操作一个表,表是二维的,一行数据,更像是一个Map<String,Object>,在Dipper中,用JSONObject表示一个流数据,代表表的一行。 | 列名 | 列值 | | --- | --- | | JSON的key | JSON的value | | ||
|
||
- 在数据源中,Dipper默认根据encoding这个属性,把字节数组转化成字符串,如果能转化成json,可以根据下面的设置,自动转化成JSONObject: | ||
- 如果可以转化成JSONObject,可以设置数据源的with属性,isJsonData=true,这个值默认是true,如果是json可以不设置。 | ||
- 如果可以转化成JSONArray,可以设置数据源的with属性,msgIsJsonArray=true | ||
- create table中的字段名,应该和json的key名字相同。 | ||
|
||
```sql | ||
create table metaq_stream | ||
( | ||
x varchar, | ||
y varchar, | ||
z varchar | ||
) with ( | ||
type = 'metaq', | ||
topic = 'metaq_topic', | ||
consumerGroup = 'metaq_group', | ||
isJsonData = 'true', | ||
encoding = 'UTF-8' | ||
); | ||
``` | ||
|
||
- 如果不能转化成json,系统会根据createtable的字段名,创建一个 <fieldName,字符串>只有一列的json,如下面的SQL,最终系统会生成{"x":"utf8编码的字符串数据"} | ||
|
||
```sql | ||
create table metaq_stream | ||
( | ||
x varchar | ||
) with ( | ||
type = 'metaq', | ||
topic = 'metaq_topic', | ||
consumerGroup = 'metaq_group', | ||
isJsonData = 'false', | ||
encoding = 'UTF-8' | ||
); | ||
``` | ||
|
||
# 数据类型 | ||
|
||
## 基本类型 | ||
|
||
| 数据类型 | 可以兼容的类型 | | ||
| --- |---| | ||
| int | Integer | | ||
| short | Short | | ||
| byte | Byte | | ||
| float | Float | | ||
| double | Double | | ||
| boolean | Boolean | | ||
| long | Long,BigInteger | | ||
| String | | | ||
| Date | Timestamp | | ||
|
||
## 集合类型 | ||
|
||
| 数据类型 | 要求 | | ||
| --- | --- | | ||
| List<> | 必须指定范型,且范型类型是上面支持的类型| | ||
| Set<> | | | ||
| Map<key,value> | | | ||
| Array | | | ||
|
||
## 类型使用说明 | ||
|
||
数据源产生的数据,有可能是基于JSONObject.parse完成解析的,里面可能包含各种java类型,可能超出上面支持的类型,不用担心,dipper是可以支持的。原因看下面的序列化部分 | ||
|
||
# 序列化 | ||
|
||
Dipper的数据只有两种情况会被序列化和反序列化: | ||
|
||
- 用到了统计,join等窗口计算,数据需要shuffle,此时需要把数据发送到指定的shuffle消息队列进行转发,此时用到的序列化和反序列化能力是消息队列提供的,Dipper并不关注。 | ||
- 在窗口计算时,需要保存中间结果,此时需要完成数据的序列化和反序列化,Dipper会采用两种方式: | ||
- 如果是上面支持的类型,Dipper自己完成序列化和反序列化 | ||
- 如果有不支持的类型,会用java自带的序列化和反序列化 | ||
|
||
# 语法介绍 | ||
|
||
- SQL 输入由一系列语句组成。每个语句都由一系列标记组成,并以分号 “;”结尾。应用的标记取决于被调用的语句。 | ||
- 多个语句构成一个拓扑结构,一个SQL中既可以有多个数据源,也可以有多个结果表 | ||
- SQL中用‘常量’,表示常量,true/false表示boolean,数字/浮点数字表示数字,其他的表示字段名 | ||
|
||
```sql | ||
create Function time_function as 'org.apache.rocketmq.streams.sql.local.runner.UDTFTest' | ||
|
||
-- 数据源 | ||
CREATE TABLE `data_source` | ||
( | ||
`_index` VARCHAR, | ||
`_type` VARCHAR, | ||
`_id` VARCHAR, | ||
`_score` VARCHAR, | ||
`_source` VARCHAR | ||
) with ( | ||
type = 'file', | ||
filePath = '/tmp/input-log.txt' | ||
); | ||
|
||
CREATE TABLE `data_model` | ||
( | ||
`_dm_timestamp` varchar, | ||
`_dm_source` VARCHAR, | ||
`_dm_type` VARCHAR, | ||
`_dm_lable` VARCHAR | ||
) | ||
with ( | ||
type = 'print' | ||
); | ||
|
||
CREATE TABLE `output_file` | ||
( | ||
`_dm_timestamp` varchar, | ||
`_dm_source` VARCHAR, | ||
`_dm_type` VARCHAR, | ||
`_dm_lable` VARCHAR | ||
) | ||
with ( | ||
type = 'file' | ||
filePath = '/tmp/output' | ||
); | ||
|
||
|
||
insert into data_model | ||
select time_function() AS _dm_timestamp | ||
,_source AS _dm_source | ||
,_type AS _dm_type | ||
, pk_label as _dm_lable | ||
from | ||
data_source, | ||
LATERAL TABLE (STRING_SPLIT(_ source, ',')) AS T(pk_label) | ||
; | ||
|
||
|
||
insert into output_file | ||
select time_function() AS _dm_timestamp | ||
,_source AS _dm_source | ||
,_type AS _dm_type | ||
, pk_label as _dm_lable | ||
from | ||
data_source, | ||
LATERAL TABLE (STRING_SPLIT(_ source, ',')) AS T(pk_label) | ||
``` | ||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.