Skip to content

alibaba-damo-academy/Med_Query

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Med_Query

Med_Query is an effective and efficient framework for medical image analysis. This repository is the
official implementation of our paper:

  • "Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query Embeding"

Installation

  • Python = 3.9 required
git clone https://github.com/alibaba-damo-academy/Med_Query.git
cd Med_Query
sh install.sh

Quick Start

  • Download RibInst masks and models from Google Drive.
  • Testing the rib parsing pipeline using your own data (NIFTI format required).
$ med_query_test --snapshot_det /path_to_models/det.pt --snapshot_seg /path_to_models/seg.pt --snapshot_roi /path_to_models/roi.pt -i /your_data_directory/ -o /output_directory/

Data Preparation For Training From Scratch

We elaborate on the instructions based on the rib parsing task, other experiments can follow
the similar settings.

  • Set an environment variable
$ echo "export WORK_DIR=/path_to_work_dir" >> ~/.bashrc
$ source ~/.bashrc
  • Prepare images and masks:

  • Extract raw data and labeled masks into:

    • $WORK_DIR/rib_experiment/images/
    • $WORK_DIR/rib_experiment/masks/
  • Copy dataset filelist and split files from RibInst directory into:

    • $WORK_DIR/rib_experiment/filelist.csv
    • $WORK_DIR/rib_experiment/trainset.csv
    • $WORK_DIR/rib_experiment/validset.csv
    • $WORK_DIR/rib_experiment/testset.csv
  • Data preprocessing offline:

$ python med_query/scripts/preprocess_rib.py -f $WORK_DIR/rib_experiment/filelist.csv -i $WORK_DIR/rib_experiment/images/ -m $WORK_DIR/rib_experiment/masks/ -o $WORK_DIR/rib_experiment/ --crop -n 32

Generated data by the preprocessing script are listed as follows:

  • Cropped data (Optional):

    • $WORK_DIR/rib_experiment/images_cropped/
    • $WORK_DIR/rib_experiment/masks_cropped/
  • Resampled data (isotropic 2mm data of raw data, also including cropped data if it exists):

    • $WORK_DIR/rib_experiment/images_2mm
    • $WORK_DIR/rib_experiment/masks_2mm
    • $WORK_DIR/rib_experiment/masks_2mm_dilated (dilated 12th pair of ribs)
  • Detailed information for each rib/target:

    • $WORK_DIR/rib_experiment/cases_info.csv

The file structure looks like:

$WORK_DIR
├── rib_experiment
│   ├── cases_info.csv
│   ├── filelist.csv
│   ├── trainset.csv
│   ├── validset.csv
│   ├── testset.csv
│   ├── images
│   │   ├── RibFrac1-image.nii.gz
│   │   ├── RibFrac2-image.nii.gz
│   │
│   ├── masks
│   │   ├── RibFrac1-ribmask_labelled.nii.gz
│   │   ├── RibFrac2-ribmask_labelled.nii.gz
│   │
│   ├── images_cropped
│   │   ├── RibFrac1-crop-1-image.nii.gz
│   │   ├── RibFrac1-crop-2-image.nii.gz
│   │
│   ├── masks_cropped
│   │   ├── RibFrac1-crop-1-ribmask_labelled.nii.gz
│   │   ├── RibFrac1-crop-2-ribmask_labelled.nii.gz
│   │
│   ├── images_2mm
│   │   ├── RibFrac1-image.nii.gz
│   │   ├── RibFrac2-image.nii.gz
│   │
│   ├── masks_2mm
│   │   ├── RibFrac1-ribmask_labelled.nii.gz
│   │   ├── RibFrac2-ribmask_labelled.nii.gz
│   │
│   ├── masks_2mm_dilated
│   │   ├── RibFrac1-ribmask_labelled.nii.gz
│   │   ├── RibFrac2-ribmask_labelled.nii.gz
│   
├── spine_experiment
└── organ_experiment

Training

  • Start training of detection model
# modify `xxx_config.py` as needed
# `tag` is a string to distinguish each trial
$ med_query_train_det -c det/configs/xxx_config.py -g 0,1,2,3,4,5,6,7 -t tag -p 12345
  • Start training of segmentation model
$ med_query_train_seg -c seg/configs/xxx_config.py -g 0,1,2,3,4,5,6,7 -t tag -p 12346
  • Start training of roi extractor
$ med_query_train_roi -c seg/configs/xxx_config_roi.py -g 0,1,2,3,4,5,6,7 -t tag -p 12347
  • Stop distributed training
$ stop_distributed_training [-t tag]

or

$ kill $(ps aux | grep train.py | grep -v grep | awk '{print $2}')

Validation

  • We support online and offline validation of detection model, the offline validation command is:
$ med_query_valid --snapshot_det /path_to_det_model/ -d validset

Validation results will be saved at $WORK_DIR/rib_experiment/results/MedDetSeg_ValRes.csv

Testing

  • Only testing detection model given test images directory
$ med_query_test --snapshot_det /path_to_det_model/ -i /input_directory/ -o /output_directory/
  • Testing the whole pipeline
$ med_query_test --snapshot_det /path_to_det_model/ --snapshot_seg /path_to_seg_model/ --snapshot_roi   
/path_to_roi_model/ -i /input_directory/ -o /output_directory/
  • Query certain ribs in the whole pipeline
$ med_query_test --snapshot_det /path_to_det_model/ --snapshot_seg /path_to_seg_model/ --snapshot_roi  
/path_to_roi_model/ -i /input_directory/ -o /output_directory/ -q 1,3,5,7,9

3D Detection Visualization

med_query_vis -m /loal_path_to_experiment/masks_2mm --info_csv /local_path_to_experiment/MedDetSeg_ValRes.csv -c {case_id}

Here is a video demo:

License

Med_Query is released under the Apache 2.0 license.

Citation

If you find this project useful in your research, please cite the following paper:

@misc{guo2024med,
      title={Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query Embedding}, 
      author={Heng Guo and Jianfeng Zhang and Ke Yan and Le Lu and Minfeng Xu},
      journal={IEEE Journal of Biomedical and Health Informatics},
      year={2024},
      publisher={IEEE}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages