Skip to content

🔴 MiniSom is a minimalistic implementation of the Self Organizing Maps

License

Notifications You must be signed in to change notification settings

alexzucca90/minisom

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI version fury.io Downloads Python package

MiniSom

Self Organizing Maps

MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details.

The project initially aimed for a minimalistic implementation of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. Although it has expanded in terms of features, it remains minimalistic by relying only on the numpy library and emphasizing vectorization in coding style.

Updates about MiniSom are posted on X.

Jump into using MiniSom via Google Colab: Open In Colab

Installation

Just use pip:

pip install minisom

or download MiniSom to a directory of your choice and use the setup script:

git clone https://github.com/JustGlowing/minisom.git
python setup.py install

How to use it

In order to use MiniSom you need your data organized as a Numpy matrix where each row corresponds to an observation or as list of lists like the following:

data = [[ 0.80,  0.55,  0.22,  0.03],
        [ 0.82,  0.50,  0.23,  0.03],
        [ 0.80,  0.54,  0.22,  0.03],
        [ 0.80,  0.53,  0.26,  0.03],
        [ 0.79,  0.56,  0.22,  0.03],
        [ 0.75,  0.60,  0.25,  0.03],
        [ 0.77,  0.59,  0.22,  0.03]]      

Then you can train MiniSom just as follows:

from minisom import MiniSom    
som = MiniSom(6, 6, 4, sigma=0.3, learning_rate=0.5) # initialization of 6x6 SOM
som.train(data, 100) # trains the SOM with 100 iterations

You can obtain the position of the winning neuron on the map for a given sample as follows:

som.winner(data[0])

For an overview of all the features implemented in minisom you can browse the following examples: https://github.com/JustGlowing/minisom/tree/master/examples

Export a SOM and load it again

A model can be saved using pickle as follows

import pickle
som = MiniSom(7, 7, 4)

# ...train the som here

# saving the som in the file som.p
with open('som.p', 'wb') as outfile:
    pickle.dump(som, outfile)

and can be loaded as follows

with open('som.p', 'rb') as infile:
    som = pickle.load(infile)

Note that if a lambda function is used to define the decay factor MiniSom will not be pickable anymore.

Explore parameters

You can use this dashboard to explore the effect of the parameters on a sample dataset: https://share.streamlit.io/justglowing/minisom/dashboard/dashboard.py

Examples

Here are some of the charts you'll see how to generate in the examples:

Seeds map Class assignment
Handwritten digits mapping Hexagonal Topology som hexagonal toplogy
Color quantization Outliers detection

Other tutorials

How to cite MiniSom

@misc{vettigliminisom,
  title={MiniSom: minimalistic and NumPy-based implementation of the Self Organizing Map},
  author={Giuseppe Vettigli},
  year={2018},
  url={https://github.com/JustGlowing/minisom/},
}

MiniSom has been cited more than 300 times, check out the research where MiniSom was used here.

Guidelines to contribute

  1. In the description of your Pull Request explain clearly what it implements or fixes. In cases that the PR is about a code speedup, report a reproducible example and quantify the speedup.
  2. Give your pull request a helpful title that summarises what your contribution does.
  3. Write unit tests for your code and make sure the existing ones are up to date. pytest can be used for this:
pytest minisom.py
  1. Make sure that there are no stylistic issues using pycodestyle:
pycodestyle minisom.py
  1. Make sure your code is properly commented and documented. Each public method needs to be documented as the existing ones.

About

🔴 MiniSom is a minimalistic implementation of the Self Organizing Maps

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%